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Learning about statistics is a lot like learning about science: the learning
is more meaningful if you can actively explore. This third installment of
Explorations in Statistics investigates confidence intervals. A confidence
interval is a range that we expect, with some level of confidence, to
include the true value of a population parameter such as the mean. A
confidence interval provides the same statistical information as the P
value from a hypothesis test, but it circumvents the drawbacks of that
hypothesis test. Even more important, a confidence interval focuses our
attention on the scientific importance of some experimental result.

estimation; R; software

THIS THIRD ARTICLE in Explorations in Statistics (see Refs. 11
and 12) provides an opportunity to explore confidence inter-
vals. A confidence interval estimates our uncertainty about the
true value of some population parameter.! For example, when
we construct a confidence interval for the mean of some
population, we expect, with some level of confidence, that the
true value of the population mean will fall within that interval.
A confidence interval provides the same statistical information
as the P value from a hypothesis test, it circumvents the
drawbacks inherent to that hypothesis test, and it provides
information about scientific importance. The routine reporting
of confidence intervals is recommended (1-3, 9, 13, 15, 18),
but the meaning of a confidence interval is difficult to under-
stand (7, 16). To be blunt, the meaning of a confidence interval
is nearly impossible to understand unless you observe the
development of its underlying concept. In this exploration, we
will.

A Brief History of Confidence Intervals

Unlike hypothesis tests whose origins can be traced to 1279
(25), confidence intervals are a recent development: Jerzy
Neyman derived them in the 1930s (20-22). There would be a
50-year lag before medical journals advocated the use of
confidence intervals (4, 5, 17, 18). It would be just 10 years
before George Snedecor added confidence intervals to his
historic Statistical Methods (24).> In 1913, 6 years before
Fisher went to Rothamsted Station (11, 26), Snedecor arrived
at Iowa State College as an assistant professor of mathematics
(6, 8, 10, 19). In his courses, Snedecor derived examples based
on agricultural and biological data from researchers at Iowa
State. These collaborations led Snedecor to create the Mathe-

Address for reprint requests and other correspondence: D. Curran-Everett,
Div. of Biostatistics and Bioinformatics, M222, National Jewish Health, 1400
Jackson St., Denver, CO 80206 (e-mail: EverettD @NJHealth.org).

! A parameter is a numerical constant: for example, the population mean.

2 Snedecor published the early editions of Statistical Methods in 1937, 1938,
and 1940. William Cochran contributed a chapter to the 1956 edition and
helped author the 1967, 1980, and 1989 editions.

matics Statistical Service (1927) and then the Statistical Lab-
oratory (1933) at what is now Iowa State University. The
hallmark of Statistical Methods is its focus on the application
of statistical methods to actual scientific problems and data.

R: Basic Operations

In the inaugural article (12) of this series, I summarized the
freeware package R (23) and outlined its installation. For this
exploration, there is just one additional step: download the
script Advances_Statistics._Code_CLR® to your Advances
folder (see Ref. 12).

If you use a Mac, highlight the commands in Advances_Sta-
tistics_Code_CI.LR you want to submit and then press
£« (command key+enter). If you use a PC, highlight the
commands you want to submit, right-click, and then click Run
line or selection. Or, highlight the commands you want to
submit and then press Ctrl+R.

The Simulation: Observations and Sample Statistics

For these explorations (11, 12), we drew a total of 1000
random samples—each with 9 observations—from our popula-
tion, a standard normal distribution with mean p. = 0 and
standard deviation o = 1 (see Ref. 12, Fig. 2). These were the
observations—the data—for samples 1, 2, and 1000:

> 4 Sample Observations

(1] 0.422 1.103 1.006 1.034 0.285
[2] 0.154  —0.654

—0.647 1.235 0.912 1.825
—0.147 1.715 0.720 0.804 0.256 1.155 0.646

[100‘:3] 0.560 —1.138 0.485 —0.864 —0.277 2.198 0.050 0.500 0.587
Each time we drew a random sample, we calculated the sample
statistics listed in Table 1. These were the statistics for samples

1, 2, and /000:

> # Sample Mean SD LCI uct

[.11 [.2] [.31] [.4] [.5] [.6] [.71
0.797 0.702 0.234 3.407 0.362 1.232
0.51

2 0.707 0.236 2.193 0.079 0.955

1000 0.233 0.975 0.325 0.718 —0.371 0.838

The commands in lines 35—63 of Advances_Statistics._Code_
CILR generate the observations and compute the sample
statistics. These commands are identical to those in the first
two scripts (11, 12).

With these 1000 sets of sample statistics, we are ready to
explore confidence intervals.

Confidence Intervals

When we began these explorations, we wanted in part to
estimate . = 0, the mean of our population. In the first
iteration of our simulation, the sample mean y = (0.797 esti-

3 This file is available through the Supplemental Material link for this article
at the Advances in Physiology Education website.
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Table 1. Sample statistics calculated for each random
sample

Column Heading Sample Statistic
1 Sample Sample number
2 Mean Mean y
3 SD Standard deviation s
4 SE Standard error of the mean SE{y} = s/\n
5 t Observed value of + = y/SE{y}
6 LCI Lower confidence interval bound
7 ucCl Upper confidence interval bound

[Reprinted from Ref. 12.]

mated the population mean. In the second iteration, the sample
mean 0.517 estimated the population mean. All told, we have
1000 sample estimates of the population mean: 900 of them are
between —0.523 and +0.552 (Fig. 1).* We can generalize from
this empirical distribution of sample means to the theoretical
distribution of the sample mean, a normal distribution with
mean w and standard deviation o/\'n (12, 15), where n is the
number of observations in the sample.

In the theoretical distribution of the sample mean (Fig. 2),
100(1 — )% of the possible sample means are covered by the
interval

[w—a, pt+al ,

where the allowance a is

a = Za/z'SD{j’} . (1)

4 The command in line 75 of Advances_Statistics_Code_CLR returns these
values. Your values will differ slightly.

empirical

theoretical

[ T T T 1
-1.0 -0.5 0.0 0.5 1.0

Sample mean

Fig. 1. Empirical (black) and theoretical (gray) distributions of the sample
mean for 9 observations. The empirical distribution is composed of 1000
sample means. The empirical standard deviation of the 1000 sample means,
0.326, is near the theoretical value of 1/3. [Reprinted from Ref. 12.]

T

u—a u

Fig. 2. Theoretical distribution of the sample mean for n observations. The

interval [ — a, i + a] covers 100(1 — «)% of the possible sample means (see

Eq. 1). Compared to the distribution of population values, the theoretical

distribution of the sample mean is narrower by a factor of 1/Vn and taller by
factor of Vn (see Fig. 1 in Ref. 13).

u+a

In Eq. 1, z,, is the 100[1 — (a/2)]th percentile from the
standard normal distribution, and SD{y} is the standard devi-
ation of the sample means, o/\Vn. The standard deviation of
the distribution of the sample mean is also called the standard
error of the sample mean SE{y}.

Suppose we want the interval [ — a, i + a] to cover 90% of
the possible sample means for 9 observations. In this situation,
pn =0, a = 0.10, and z,,, = 1.645. Because we defined the
population standard deviation o to be 1 (see Ref. 12),

SD{y} = ohn =119 = 1/3 ,
and the resulting allowance a is
a = Z,,°SD{y} = 1.645-1/3 = 0.548

Therefore, the interval [—0.548, +0.548] covers 90% of the
sample means for 9 observations. This theoretical interval
agrees with the empirical interval of [—0.523, +0.552].

When we calculate the interval [w — a, i + a], we use the
population mean w to learn about possible values of the
sample mean y. Is this what we do when we calculate a
confidence interval for the mean of some population? Sadly,
no. When we calculate a confidence interval, we use the
sample mean y to learn about possible values of the popu-
lation mean . Happily, we can use the interval [n — a,
i + a] to derive a confidence interval.

First, we write the interval [ — a, w + a] as the probability
expression

Prip —a=y=p+al=1—-«a

What does this expression mean in words? It means that the
probability is 1 — « that a sample mean is covered by-lies
within—the interval [ — a, w + a] (see Fig. 2). Then, we
rearrange the joint inequality portion of the expression to get
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Pry —a=pn=y+a=1—-«
In this form, the interval

[y —a,y+al )

is called the 100(1 — a)% confidence interval for the popula-
tion mean . Now we have what we want.

In an actual experiment, we do not know the population
standard deviation o. Therefore, we use the sample standard
deviation s to estimate the population standard deviation o and
s/\Vn to estimate the standard error of the sample mean. In
addition, when we calculate a 100(1 — a)% confidence interval
for some population mean p, we handle our uncertainty about
the actual value of o by replacing z,, (Eq. 1) with t, ,, the
100[1 — (o/2)]th percentile from a Student ¢ distribution with
v = n — 1 degrees of freedom. As a result, the allowance we
apply to the sample mean to obtain the 100(1 — )% confi-
dence interval (Eq. 2) becomes

a = ta/Z,v.SE{;)} b

where SE{y} = s/Vn.®> This allowance is bigger than the
allowance in Eq. I: we are more uncertain about the value of
the population mean . This happens because if v < oo, then
tary = Zoo for all values of a.

Suppose we want to calculate a confidence interval for the
population mean p = O using the observations 0.422,
1.103,. . ., 1.825 of the first sample. The mean and standard
deviation of these 9 observations are y = 0.797 and s = 0.702,
and the estimated standard error of the mean is

SE{y} = s/yn = 0.702/9 = 0.234

Because n = 9, there are v = 8 degrees of freedom. If we want
a 90% confidence interval, then o = 0.10, ¢, , = 1.860, and
the allowance a = 1.860 X 0.234 = 0.435. Therefore, the 90%
confidence interval is

[0.362, 1.232] = [0.36, 1.23]

What does this expression mean in words? We can declare,
with 90% confidence, that the population mean is included in
the interval [0.36, 1.23]. Because O is outside this interval, we
can state, with 90% confidence, that O is not a plausible value
of the population mean. This inference is consistent with our
second exploration in which we rejected the null hypothesis
Hy: i = 0 and concluded that the sample observations were
consistent with having come from a population that had a mean
other than O (see Ref. 12).

But now we have a problem: a single confidence interval
either does or does not include the true value of some popu-
lation parameter. In a real experiment, we do not know which
outcome has occurred. So the question is, where does the
notion of confidence in a confidence interval come from? The
answer: not from a single confidence interval but from a
theoretical process of calculating a whole bunch of confidence
intervals. For these explorations, we drew a total of 1000
random samples. Each time we drew a random sample, we
calculated its mean and standard deviation. Because the pop-

5 The standard error of the sample mean SE{¥} is identical to the standard
deviation of the theoretical distribution of the sample mean SD{y} in Eg. 1.

ulation from which we drew the samples was distributed over
a range of possible values, the sample means (see Fig. 1) and
standard deviations (see Ref. 12, Fig. 3) varied among our
1000 samples. Therefore, we calculated 1000 different confi-
dence intervals. We expect about 100(1 — a)% of these
confidence intervals to include the actual value of the popula-
tion mean (Fig. 3). This is the underlying concept of confidence
in a confidence interval. The next question is, how do we use
a confidence interval to help us make an inference about
scientific importance?

In a manner similar to Ref. 14, suppose you find three
articles in Physiological Genomics that investigated indepen-
dently the impact of three different drugs on the expression of
some gene. Suppose also that a fractional change of 0.25 (25%)
results in an altered phenotype. Each study involved a sample
of 9 subjects, and each reported a 90% confidence interval for
the fractional change in expression of the gene. For each drug,
these are the sample mean y, sample standard deviation s, P
value, and 90% confidence interval:

Drug y s P Conf Int
A 0.797 0.702  0.005 0.36to 1.23
B 0.008 0.007 0.005  0.004to0 0.01
C 0.797 2106 0.14 —0.51to +2.10

How do you interpret these results?

Drug A increased expression by 80%, a change that differed
from O (P = 0.005). The confidence interval suggests the true
impact of drug A is probably a 36—123% increase in expres-
sion, a change that is scientifically meaningful. Drug A pro-
duced a convincing change of scientific importance.

o~

-

[ T T T 1
-2 -1 0 1 2

Confidence interval bounds

Fig. 3. Confidence intervals for the initial 100 samples of 9 observations. It is
because of random sampling that the position and length of the confidence
intervals vary from sample to sample. About 90 of these intervals—the actual
number will vary—are expected to cover the population mean of 0. In this
simulation, 84 of the confidence intervals cover 0; the 16 exceptions are
highlighted (numbered black lines). To generate this data graphic, highlight
and submit the lines of code from Figure 3: first line to Figure 3: last line.

Advances in Physiology Education « VOL 33 « JUNE 2009

6002 ‘2z 1snbny uo Bio ABojoisAyd-uenpedfe woly papeojumoq



http://advan.physiology.org

Staying Current

90 CONFIDENCE INTERVALS

Drug B increased expression by 1%, a change that also
differed from O (P = 0.005). The confidence interval suggests
the true impact of drug B is probably a 0.4—1% increase in
expression, a change that is scientifically trivial but quite
precise. Drug B produced a convincing change of no scientific
importance.

Drug C increased expression by 80%, a change consistent
with O (P = 0.14). The confidence interval suggests the true
impact of drug C could range from a 51% decrease to a 210%
increase in expression. Either would be scientifically meaning-
ful. Because it is relatively long, the confidence interval for
drug C is an imprecise estimate of the true impact of drug C on
expression of the gene. Drug C bears further study using a
larger sample size.

Note that the scientific importance of the upper and lower
bounds of a confidence interval depends on scientific context.

Summary

As this exploration has demonstrated, a confidence interval
is a range that we expect, with some level of confidence, to
include the true value of a population parameter such as the
mean. For example, when we construct a confidence interval
for the mean of some population, we assign numerical limits to
the expected discrepancy between the sample mean y and the
population mean . A confidence interval is useful because it
focuses our attention away from a singularly statistical P value
and toward the scientific importance of some experimental
result.

In the next installment of this series, we will explore boot-
strapping, a statistical technique even more recent than confi-
dence intervals. Bootstrapping gives us an approach we can use
to assess whether the inferences we make from hypothesis tests
and confidence intervals are justified.
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