Slide 1

ASPIRE SESSION 3:
Study Procedures and Data
Elements, Sources, Uses, and Issues

Candice Preslaski, PharmD, BCPS, BCCCP
Clinical Pharmacist Specialist - SICU

Slide 2

Pre-Session Lecture

Study Procedures and Data Elements, Sources, Uses, and Issues

Describe basics of a study procedure

Illustrate data elements and sources

Characterize methods for identifying study patients/subjects, exposures, and outcomes

Appraise data limitations and means to overcome limitations

Identify factors needed for and to calculate a sample size

Slide 3

Example Study Review

- <u>Study Question</u>: Does a new protocol for "pharmacy to dose warfarin" increase percentage of patients with goal INR at day 5 of therapy?
- <u>Study Design</u>: Pre/Post

Slide 4

Identification of Study Patients

- Primary data
 - Due to time constraints, not likely as would need to be actively enrolling throughout year
 Better suited for a prospective interventional or observational design
- Secondary data
 - Random or targeted chart review
 Time intensive
 Possibility to miss patients or introduce bias
- Data query

Slide 5

Baseline Characteristics

DENVER HEALTH

- Demographics (age, sex, race, etc.)
- Patient identification (inclusion/exclusion criteria)
- Potential confounders
 - Think of your outcome (dependent variable); are there variables already known to affect/influence the outcome
 - Doing background research for your topic will help you figure this out!

Slide 6

Outcome Data

- <u>Primary Outcome</u>

 How will outcome be analyzed/presented
 - Proportions? Means?
 Necessary to appropriately calculate sample size
- <u>Secondary Outcomes</u>: Study protocol compliance?
 - Efficacy endpoints? Safety endpoints?
 - Think ahead! Are there any outcomes that would be difficult to meet power but that you still want to investigate?

Slide	7

Calculating Sample Size

- DENVE
- Based only on the primary outcome
- Establish acceptable α (5%) and β (20%) error
 - Lower error = bigger sample size
- Determine expected difference
 - Sampling
 - Published data
 - Clinical significance

STOP! Is this study feasible?

Slide 8

Example Sample Size Calculation

- Primary outcome: percentage of patients
- within goal INR at day 5
 Pre-implementation: 50%
 - Obtained from baseline data (previous project, random sampling, etc.)
- Post-implementation: 75%
 - Goal set by pharmacy department, clinically significant improvement
- α error = 5%, β error = 20%, power = 80%

Slide 9

Example Sample Size Calculation DENVER

- Primary outcome: percentage of patients within goal INR at day 5
- Pre-implementation: 50%

55 patients per group

- Post-implementation: /5%
 - Goal set by pharmacy department, clinically significant improvement
- α error = 5%, β error = 20%, power = 80%

Slide 10

Requesting Data

- Get input on your query prior to submitting
- Meet with analyst or whoever may be obtaining your data

 – Ask questions!
- The more you both understand your data points, the more meaningful the data pull
- Think about differences in how the same data point can be described (e.g. ICD-9 vs. ICD-10, broad categories vs specific diagnosis)
- Where is the best place to obtain the data?

Slide 11

Quality Assurance

- Output from data query is HIGHLY dependent on input criteria
- Spot check a few patients with chart review
- Does the data point match what you are looking for?
- tor?

 Is the timestamp the order start? administration time?
 Is glucose reading from a lab draw? POC?
 Less patients identified than you thought or missing data? Is there actually no data or is there another way to request the data?

Slide 12

Tip #1: Data Collection Tool

- Create and practice with your data collection tool <u>early</u>
- Especially important when a lot of data is coming from chart review (vs. database pulls)
- Helps identify challenges/limitations - Will these compromise the project?

 - Are there alternative data points that will give you the same information?

 Useful to help budget time and set realistic goals

Tip #2: Definitions are Key

- Develop definitions for any variables that require interpretation
- Ensures consistency
- Mitigates introducing bias into data collection
- Especially helpful if multiple people will be collecting data

Slide 14

Tip #3: Missing/Incomplete Data

- Inherent limitation of retrospective studies
- Identify a strategy for how you will handle missing or incomplete data
 - Censor?
 - Carry forward previous data point?
 - Exclude patient completely?

Slide 15

Tip #4: Perform Check-Ins

DENVER HEALTH

- Meet with preceptor to perform check-ins throughout the data collection process
- Ask questions!
- Earlier identification of missing data or need to add a variable
- Minimize rework
- Accountability

				_
C	lid	\sim	1	_
. วา		_	- 1	1)

