
Biostatistics for the Clinician183

Learning Objectives
1. Understand when to use and how to calculate and

interpret different measures of central tendency (mean,
median, and mode) and dispersion (range, interquartile
range [IR], and standard deviation [SD]).

2. Identify the types of error encountered in statistical
analysis, the role of sample size, effect size, variability,
and power in their occurrence, and implications for
decision making.

3. Describe basic assumptions required for utilization of
common statistical tests including the Student’s t-test,
paired t-test, Chi square analysis, Fisher’s exact test,
Mann-Whitney U test, Wilcoxon signed rank, log rank
test, and Cox Proportional Hazards model.

4. Understand the common statistical tests used for
analyzing multiple variables, including one-way and
two-way (repeated measures) analysis of variance.

5. Interpret a confidence interval (CI) with inferential
functions.

6. Differentiate between association and correlation
analysis, interpret correlation coefficients and
regression coefficients, and describe the application of
single and multivariable statistical models.

7. Describe and interpret common statistical techniques
used in performing meta-analysis.

Introduction
Pharmacists need to have a basic understanding of

statistical concepts to critically evaluate the literature and

determine if and how information from a study can be
applied to an individual patient.  By using data from
well-designed studies that have been appropriately analyzed
and interpreted, clinicians are able to determine how the
“average patient” might respond to a new medication.  The
problem of course, is how many times do clinicians care for
“average patients”?  Statistics would be much less
sophisticated if every individual were alike; response to
therapy would be highly predictable.  The science of
statistics allows clinicians to describe the profile of the
average person, then estimate how well that profile matches
that of others in the population under consideration.
Statistics do not tell the reader of the clinical relevance of
data.  When a difference is considered to be statistically
significant, the reader rejects the null hypothesis, and state
that there is a low probability of getting a result as extreme
as the one observed with the data.  Clinicians need to
interpret this data and to guide the clinical decision-making
process (i.e., the decision to use or not use a medication for
a specific patient).  By staying current with the literature and
critically evaluating new scientific advancements, clinicians
are able to make educated decisions regarding how to care
for patients.

Several published studies have critiqued the selection
and application of statistics in the medical literature.  These
articles, many in well-respected medical journals, have
consistently found high rates of inappropriate application,
reporting, and interpretation of statistical information.
Although it is critical to collaborate with a biostatistician in
all phases of research, it is not necessary to be a statistician
to present or interpret basic statistics appropriately.  This
chapter provides an overview of basic concepts related to
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“0” and male patients as “1”.  The ordering is arbitrary and
no information is gained or lost because of the order.  The
conclusions that are drawn will be identical regardless of
the ordering of the samples.  Nominal data are described by
using frequencies (e.g., percent of females).

Ordinal variables are also sorted into mutually exclusive
groups based on some common characteristic that all
members of the group possess.  However, unlike nominal
data, ordinal data are sorted by categories often with
numbers denoting a rank order.  Again, whether numbers
are assigned to these values is irrelevant.  Ordinal data are
used when the relative degree of presence or absence of a
certain characteristic can be measured qualitatively, not
quantitatively.  The magnitude of difference is either
unequal or unknown.  The type of data is often collected
NSAID Nonsteroidal anti-inflammatory drug
SEM Standard error of the mean
IR Interquartile range
SD Standard deviation
df Degrees of freedom
CI Confidence interval
ANOVA Analysis of variance
H0 Null hypothesis

Abbreviations in this
Chapter
descriptive and inferential statistics. To begin, one needs to
have a basic understanding of terminology commonly used
in statistics, including variables and types of data.

Variables 
A variable is any characteristic that is observed or

measured (e.g., sex, baseline fasting blood sugar, or
weight).  Variables may be described as either independent
(predictor) or dependent (response).  The independent
variable is the intervention, or what is being manipulated in
a study.  Most statistical tests require at least one
independent variable that is established in advance and
controlled by the researcher.  The dependent variable is the
outcome of interest, which should change in response to
some intervention.  At least one or more dependent
variables are then measured against their independent
counterparts.  For example, in a study that compares a new
nonsteroidal anti-inflammatory drug (NSAID) to standard
therapy for the treatment of pain, the degree of symptom
relief (dependent variable) depends on whether or not the
patients received the new NSAID (independent variable).
Independent variables that can affect the dependent variable
are called confounding variables.  These variables must be
controlled through the design of the study or analysis.  An
example of a confounding variable is severity of disease.  If
there are more patients with severe disease in one group
than in the other, this may ultimately affect the outcome of
the study.

Types of Data 
Variables are frequently classified as nominal, ordinal,

interval, or ratio.  Nominal data can be sorted into one of a
limited number of categories, but the categories cannot be
ordered.  An individual may belong to one and only one
group.  Examples of nominal data include demographic data
such as sex (i.e., male or female) and risk factors
(e.g., smoker or nonsmoker), or may include a clinical
outcome (e.g., presence or absence of disease).  Nominal
variables do not have to be dichotomous, they can have any
number of categories.  For instance, a patient may have
blood type A, B, AB, or 0.  The important concept is that
any one blood type is not better or worse than another.
When entering these data into a spreadsheet, researchers
commonly code nominal data by assigning a number to
each value.  For example, female patients may be coded as

when the evaluation is subjective, such as when assessing
patient attitudes or clinical symptoms.  For example, when
patients complain of a headache during a study, they may be
asked to describe the severity of that headache on a scale of
1–4 (1 = mild, 2 = moderate, 3 = moderately severe, and
4 = severe).  Although a rating of 4 is worse than 2,
clinicians do not really know by how much.  When
describing the severity of headache, a number 4 is not
necessarily twice as severe as a number 2.  Because these
are not real numbers, arithmetic means are not generally
calculated with ordinal data.  Median and frequency are
used to describe this type of data.

Interval and ratio are the most powerful and specific type
of data. Unlike ordinal data, the distance between the
consecutive numbers on the scale is constant, and therefore,
one can appropriately perform arithmetic (e.g., sum,
difference, multiplication, or division).  Interval and ratio
data are equivalent in all characteristics except that ratio data
have a true zero.  Examples of interval and ratio data are
body temperature and body weight, respectively.  Interval
and ratio data may be described using the mean or median.

The terms discrete or continuous are also used to
describe interval and ratio data. Data are considered to be
discrete if the observations are integers that correspond with
a count of some kind.  These variables can take on a limited
number of values.  For example, if a patient was asked to
rate his or her pain on a 5-point scale where only the values
1, 2, 3, 4, and 5 were allowed, only five possible values
could occur.  Such variables are referred to as “discrete”
variables.  In contrast, data are considered to be continuous
if each observation theoretically falls on a continuum.
Continuous data may take any value within a defined range;
the limiting factor is the accuracy of the measuring
instrument.  Examples of continuous data include uric acid
or glucose blood levels, body temperature, and body weight.
Although it is feasible to consider a body temperature of
98.6, one does not discuss the concept of counting white
blood cells as a percent of a cell. The concept of data being
described as discrete or continuous will be important when
examining the assumptions for statistical testing later in the
chapter.

Investigators may transform the data collected to a lower
type of data.  In other words, interval and ratio data may be
reported as ordinal or nominal, and ordinal data may be
reported as nominal.  Nominal data may not be reported as
ordinal, interval, or ratio data.  For example, measurement
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of blood pressure is normally collected using an interval
scale.  It could also be reported as follows:

� 90 mm Hg   10 patients
> 90 mm Hg   16 patients

In this example, data from patients are inserted into one of
two mutually exclusive categories.  It is not possible for
patients to fit into more than one category.  The occurrence
of one event excludes the possibility of the other event.  This
is an example of how nominal data can be presented.  It is
generally undesirable to transform data to a lower level
because information is lost when individuals are collectively
included in more general categories.  If data are transformed,
it should be presented in both ways.  For instance, in the
presentation of blood pressure measurements, it may be
worthwhile to present the mean change in blood pressure
(ratio data), as well as the numbers of patients that achieve
goal blood pressure values (nominal data).

Descriptive Versus Inferential Statistics 
Descriptive statistics are concerned with the presentation,

organization, and summarization of data.  In contrast,
inferential statistics are used to generalize data from our
sample to a larger group of patients.  A population is defined
as the total group of individuals having a particular
characteristic (e.g., all children in the world with asthma).
A population is rarely available to study as it is usually
impractical to test every member of the population.
Therefore, inferences are made from taking a randomized
sample of the population.  A sample is a subset of the
population. Inferential statistics require that the sampling be
random; that is, each patient has an equal chance of
receiving either treatment.  Some types of sampling seek to
make the sample as representative of the population as
possible by choosing the sample to resemble the population
on the most important characteristics (surveys for assessing
medication histories relating to risk of side effects).  For
instance, when investigators study a new NSAID in 50
geriatric patients with osteoarthritis, they are not just
interested in how these patients in the study respond, but
rather they are interested in how to treat all geriatric
individuals with osteoarthritis.  Thus, they are trying to
make inferences from a small group of patients (sample) to
a larger group (population).

Frequency Distribution 
Data can be organized and presented in such a way that

allows an investigator to get a visual perspective of the data.
This is accomplished by constructing a frequency
distribution.  These distributions may be described by the
coefficient of skewness or kurtosis.  Skewness is a measure
of symmetry of a curve.  A distribution is skewed to the
right (positive skew) when the mode and median are less
than the mean.  A distribution that is skewed to the left
(negative skew) is one in which the mode and median are
greater than the mean.  The direction of the skew refers to
the direction of the longer tail. Kurtosis refers to how flat
(platykurtic) or peaked (leptokurtic) the curve appears.  The
frequency distribution histogram (i.e., a type of bar graph

representing an entire set of data) is often a symmetric,
bell-shaped curve referred to as a normal distribution (also
referred to as Gaussian curve, curve of error, and normal
probability curve).  Under these circumstances (i.e., normal
distribution), the mean, median, and mode are all similar,
and the kurtosis is zero.  The mean plus one standard
deviation (SD) includes approximately 68% of the data.
The assumption that there is normal distribution of variables
in the population is important because the data are easy to
manipulate.  Several powerful statistical tests (e.g. Student’s
t-test, as well as other parametric tests) require a normal
distribution of data.  However, the Student’s t test and other
parametric tests assume rather than require normal
distributions.  The central limit theorem states that given a
distribution with a mean (m) and variance (s2) the sampling
distribution of the mean approaches a normal distribution
with a mean (m) and a variance (s2)/N as N (sample size)
increases.  This assumption is based on the premise that
when equally sized samples are drawn from a non-normal
distribution from the same population, the mean values from
the samples will form a normal distribution, regardless of
the shape of the original distribution.  For most
distributions, a normal distribution is approached very
quickly as the sample increases (e.g., N>30). 

Mean, Median, and Mode 
There are three generally accepted measures of central

tendency (also referred to as location):  the mean, median,
and mode.  The mean (denoted by ) is one acceptable
measure of central tendency for interval and ratio data
(Table 1-1).  It is defined by the summation of all values
(denoted by X for each data point) divided by the number of
subjects in the sample (n) and can be described by the
equation

= ∑x/n.

For instance, the mean number of seizures during a
24-hour period in seven patients with the following values
9, 3, 9, 7, 8, 2, 5, is calculated by dividing the sum of 43 by
7, which is equal to 6.14, or an average of approximately six
seizures per patient.

The median is the value where half of the data points fall
above and half below it. It is also referred to as the 50th
percentile.  It is an appropriate measure of central tendency
for interval, ratio, and ordinal data.  When calculating the
median, the first step is to put the values in rank order.  For
example, the median number of seizures during a 24-hour
period in seven patients with the following values 2, 3, 5, 7,
8, 9, 9 is 7.  There are three values below and three values
above the number 7.  If we added one more value (e.g., 11),
the median would be calculated by taking the two middle
numbers and dividing by two.  Under these circumstances,
the calculation would change to (7 + 8)/2 to get a median of
7.5.  Half of the numbers are below 7.5 and half are above.
The median has an advantage over mean in that it is affected
less by outliers in the data.  An outlier is a data point that is
an extreme value either much lower or higher than the rest
of the values in the data set.  Mathematically, outliers can be
determined by using the following formulas:  values greater
than 1.5 times the interquartile range (IR) plus the upper
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quartile or values less than the lower quartile minus
1.5 times the IR are often considered outliers.  A more
extensive description of IR is described below.

The measure of central tendency for nominal data is the
mode.  The mode is the most frequently occurring number
in a dataset.  The mode of the above series of numbers is 9.
The mode is not frequently presented in clinical trials unless
a large data set is described.

Measures of Dispersion—Range, Interquartile
Range, and Standard Deviation 

The measure of dispersion (also referred to as measures
of variability or spread) describes how closely the data
cluster around the measure of central tendency.  Data points
that are scattered close to the measure of central tendency
give a different perspective than those not as close to the
value.  For instance, the mean may be seemingly very
different between two groups, but when examining data
with a large amount of variability around the mean, they
may begin to look similar. There are three common
measures of dispersion:  the range, IR, and SD.  The range
is defined as the difference between the highest and lowest
values.  If we had the same numbers as above (i.e., 2, 3, 5,
7, 8, 9, 9) to describe the total number of seizures at
baseline, the range of values is 9-2 or 7.  Frequently, when
presenting data in clinical trials, investigators will describe
this data as “9-2”, and not use the single number.  This
provides more information about the sample.  There is an
advantage in providing the mean plus the range over
providing the mean alone.  For instance, a mean age of 50 in
a study without a measure of dispersion gives a different
sense of the data than when you tell individuals that the
range included individuals from 12 to 78 years of age.  This
tells the reader that data were obtained from both the
adolescent and geriatric populations.  The disadvantage of
the range over other measures of dispersion is that it is
greatly affected by outliers.  In the above example, if there
was only one 12 year old in the study, and the next youngest
individual in the study was 47, the range was greatly
affected by this one outlier.

The IR is another measure of spread or dispersion.  The
lower quartile is also referred to as the 25th percentile and
the upper quartile is the 75th percentile.  The IR is defined

as the difference between the lower quartile (often referred
to as Q1) and the upper quartile (often referred to as Q3) and
comprises the middle 50% of the data.  The formula for the
IR is Q3 - Q1.  To determine the IR, the numbers are again
sorted in rank order. Consider the following example of
number of seizures:

In this example, the first quartile is 3, the second quartile
(which is the median) is 7, and the third quartile is 9.  The
IR is 3 to 9.  Although the IR is not used extensively, it is
considered to be underutilized because it is considered
a stable measure of spread.

The SD is the most widely used measure of dispersion.  It
is defined as an index of the degree of variability of study
data about the mean.  For example, assume you need to
determine what the mean and SD for the following data set
of scores on a test are:  56, 62, 52, 50, and 45.  The sample
mean is 53 mm Hg (56 + 62 + 52 + 50 + 45)/5.  The
deviations are calculated in Table 1-2.

The sum of the deviations will always be zero.  When the
sum of the squared differences between the individual
observations and the mean is computed, and this value is
divided by the degrees of freedom (df), it produces an
intermediate measure known as the sample variance (s2).
The degrees of freedom (n-1) are used in this equation to
correct for bias in the results that would occur if just the

2 3 5 7 8 9 9
Q1 Q2 Q3

186The Science and Practice of Pharmacotherapy II Pharmacotherapy Self-Assessment Program, 4th Edition

Table 1-1. Common Statistical Applications
Type of Data Measures of Measures of Common Statistical Tests for Common Statistical Tests for Paired 

Location Variability Independent Groups of Data Groups of Data

Nominal Mode None 2 groups of data: Chi square 2 groups of data: McNemar’s Test 
3 or more groups of data: 3 or more groups of data:

Chi square Cochrane Q

Ordinal Median and Range and 2 groups of data: Wilcoxon 2 groups of data: Wilcoxon
mode interquartile range rank sum or Mann-Whitney U signed rank test

3 or more groups of data: 3 or more groups of data:
Kruskal-Wallis test Friedman two-way analysis of

variance

Interval/Ratio Mean, median, Range, interquartile 2 groups of data: Student’s t-test 2 groups of data: Paired t-test
and mode range, and 3 or more groups of data: 3 or more groups of data:

standard deviation One-way analysis of variance Two-way (repeated measures)
analysis of variance

Table 1-2. Calculation of Standard Deviation for a
Group of Test Scores
Observation Deviation Squared Deviation
X X- (X- )2

56 3 9
62 9 81
52 -1 1
50 -3 9
45 -8 64

365 0 164
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number of observations (n) was used.  In general, the
degrees of freedom of an estimate are equal to the number
of independent scores that go into the estimate minus the
number of parameters estimated.  If the average squared
deviation was divided by n observations, the variance would
be underestimated.  As the size of the sample of data
increases, the effect of dividing by n or n-1 is negligible.
The sample SD, equal to the square root of the variance, is
denoted by the letter s as defined by the following formula:

∑(X- )2
s = n-1

Using this formula, the SD is the square root of 164/4 or
6.4.  From this example, one can see that each deviation
contributes to the SD.  Thus, a sample of the same size with
less dispersion will have a smaller SD.  For example, if the
data were changed to: 55, 52, 53, 55, and 50, the mean is the
same, but the SD is smaller because the observations lie
closer to the mean.

The usefulness of the SD is related only to normally
distributed data.  If one assumes that data are normally
distributed, then one can say that one SD below and above
the mean includes approximately 68% of the observations,
two SDs above and below the mean include approximately
95% of the observations, and three SDs in either direction
include approximately 99% of the observations.  The
histogram in Figure 1-1 describes the distribution of test
scores for a larger sample.

In Figure 1-1, the mean was calculated to be 37.78 and
SD is 13.15.  Therefore, approximately 68% of the values
will be between 24.63 and 50.93 (mean ± 1 SD),
approximately 95% of individuals will have scores between
11.48 and 64.08 (mean ± 2 SD), and approximately 99% of
the sample will be between 0 and 87.23 (mean ± 3 SD).

The SD and standard error of the mean (SEM) are
frequently confused terms.  The SD indicates the variability
of the data around the mean for a sample, whereas the SEM
is a measure of precision for the estimated population mean.
This estimate is most commonly expressed using a
confidence interval (CI) and is related to SD by the equation:

SEM = SD/ n.

The use of CIs is important in hypothesis testing and is
described later in the chapter.

Hypothesis Testing and Meaning of P 
A hypothesis is an unproved theory. The null hypothesis

is defined as the theory that no difference exists between
study groups.  If a study were to compare two means, the
null hypothesis (H0) is µA = µB (i.e., the population mean of
group A is equal to the population mean of group B).  The
alternate (or research) hypothesis is the theory that a
difference does exist between groups. This may be that the
mean of group A is greater or less than the mean of group B
(µA > µB or µA < µB).  If the change can be in either
direction (i.e., µA is not equal to µB), this is a two-tailed test
of significance.  If a change is in only one direction
(e.g., µµA > µB), then a one-tailed test of significance is
used.  This has implications for type I error rate (also
referred to as alpha or α), or p value.

One needs to have a basic understanding of probability to
appreciate the meaning of p. Probability deals with the
relative likelihood that a certain event will or will not occur,
relative to some other events.  The probability is always a
number between 0 and 1.  The concept of probability is
discussed only in the context of a chance operation; that is,
an operation whose outcome is determined at least partially
by chance.  This can be illustrated with a coin toss.  In this
case, the chance operation is a toss of the coin.  The event is
heads.  Each time the coined is tossed, it either falls heads or
it does not.  If the coin is equally likely to fall heads or not,
then the probability is 0.5.  The p value in clinical trials is
the probability that chance alone would yield a difference
among the groups as large or larger then the observed if the
null hypothesis is really true.  In other words, it is the
probability that a type I error was committed.  In general, the
p value should not exceed 0.05 to reject the null hypothesis.
In other words, there is a one in 20 (5%) chance that the
investigator will be wrong in concluding that a difference
exists between the study groups.  The 0.05 threshold is an
entirely arbitrary level and has been a subject of much
debate in the literature.  Once the alpha level has been set,
the researcher collects the data and is interested in
determining if there is a statistically significant difference.
Once a statistical test is selected, a “t statistic” is calculated
and a p value is determined. The p value is the probability
of obtaining a result as extreme or more extreme than the
actual sample value obtained given that the null hypothesis
is true.  If the p value is less than or equal to the alpha level
established (typically set at a threshold of 0.05), then the
null hypothesis is rejected and the difference between the
groups is considered to be statistically significant.  If the
p value is greater than the alpha established (typically set at
a threshold of 0.05), the null hypothesis is accepted and the
difference between the groups is not considered to be
statistically significant.  Any measurement based on a
sample of individuals will differ from the true value by some
amount as a result of the random process.  Whenever two
treatments are compared, some differences will be present
purely by chance.  This is referred to as random error.  As a
result, unless one takes the role of chance into account,
every experiment will conclude that one treatment is better
than another.

The use of a one-tailed or two-tailed test can have
implications on the risk of making a type I error.  A
two-tailed test is preferred in hypothesis testing; if
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investigators use a one-tailed test, they need to justify its
use. There are two ways in which the type I error can be
distributed.  In a two-tailed test, the rejection region is
equally divided between the two ends of the sampling
distribution.  A sampling distribution can be defined as the
relative frequency distribution that would be obtained if all
possible samples of a particular sample size were taken.  A
two-tailed test divides the alpha level of 0.05 into both tails.
In contrast, a one-tailed test is a test of hypothesis in which
the rejection region is placed entirely at one end of the
sampling distribution. A one-tailed test puts the 5% in only
one tail. A two-tailed test requires a greater difference to
produce the same level of statistical significance as a
one-tailed test. The two-tailed test is more conservative and
thus preferred in most circumstances.

The Significance of No Significant Difference 
The failure to find a difference between (among) a set of

data does not necessarily mean that a difference does not
exist.  Differences may not be detected because of issues
with power.  Power is the ability of a statistical test to reject
the null hypothesis when it is truly false and therefore
should be rejected.  Type II error (also referred to as beta or
β) is defined as not rejecting the null hypothesis when in
actuality it is false; that is, to falsely consider that no
difference exists between study groups.  Power and type II
error are related in the equation

1 - type II error = power.

Statistical power is not an arbitrary number of a study,
but rather it is controlled by the design of the study.  In
studies, a desirable power is at least 80%.  This means that
there is an 80% chance of detecting a difference between
two groups if a difference of a given size really exists.

Sample size is related to power; the higher the power that
is desired by the investigator, the larger the sample size
required.  If there are insufficient numbers of patients enrolled
in a study, a statistically significant difference will not occur.
The sample size is the one element that can easily be
manipulated to increase the power. When calculating the
sample size for a study that compares two means, several
elements are used:  desired detectable difference, variability
of the samples, and the level of statistical significance (α).
The type I error is typically set at 0.05.  There is an inverse
relationship between type I and type II errors.  If investigators
choose to lower the risk of type I error in a study, they
increase the risk of type II error.  Therefore, the sample size
needs to be increased to compensate for this change.

Likewise, effect size (minimum clinically relevant
difference) is also determined a priori (a priori is a term
used to identify a type of knowledge that agrees with reason
and is frequently obtained independent of experience), and
is selected based on clinical judgment and previous
literature.  There are times when a 1% difference is
irrelevant, as in the case of a 70% success rate compared to
71% rate for a new antibiotic compared to standard.  In
contrast, investigators may be able to defend a difference of
2% in the rate of a fatal myocardial infarction after receiving
a new medication compared to standard therapy.  A
sufficient number of patients need to be recruited so that any

clinically meaningful differences are also statistically
significant.  Given enough study subjects, any true
difference among study groups can be detected at a chosen
p value, even if the effect size is clinically unimportant.  The
smaller the effect size that is clinically important, the greater
the number of subjects needed to find a difference if one
truly exists. For fixed sample sizes, as the effect size
increases, the p value decreases.  The clinical question is if
it would be worthwhile to enroll these additional subjects to
attain statistical significance if the difference between the
two groups is not clinically important.  Therefore, it is
important for investigators to stipulate the minimum effects
when planning a study.  The variance is also set at the
beginning of the study and is generally based on previous
literature.  If the variance is low, a given sample of a group
is more likely to be representative of the population.
Therefore, with lower variance, fewer subjects are needed to
reflect the underlying population accurately and thus fewer
patients are needed to demonstrate a significant difference if
one exists.  The best way to prevent a type II error from
occurring is to perform a sample size calculation before
initiation of the study.

Selection of Statistical Test 
If the incorrect statistical test is used, a misleading or

inaccurate result may occur. There are many statistical tests,
and several may be appropriate to use for a given set of data.
The test that investigators use needs to be identified in the
statistical methods section of the published report and in the
footnotes of tables.  Several commonly used statistical tests
are described in Table 1-1.  Among key considerations for
choice of an appropriate test is the type of data, whether the
data are paired (dependent) or unpaired (independent), and
number of groups of data being compared.  Statistical tests
are also categorized into parametric or nonparametric tests.
If appropriate criteria are met, a parametric test is preferred.
Parametric tests are used to test differences using interval
and ratio data.  Samples must be randomly selected from the
population and they must be independently measured.  In
other words, the data should not be paired, matched,
correlated, or interdependent in any way.  Two variables are
independent if knowledge of the value of one variable
provides no information about the value of another variable.
For example, if you measured blood glucose level and age
in a diabetic population, these two variables would in all
likelihood be independent.  If one knew an individual’s
blood glucose, this would not provide insight into a person’s
age.  However, the variables were blood glucose and
hemoglobin A1c, then there would be a high degree of
dependence. When two variables are independent, then the
Pearson’s correlation (further information on Pearson’s
correlation is provided in the Regression and Correlation
Analysis section) between them is 0.  When the phrase
“independence of observations” is used, reference is being
made to the concept that if two observations independent of
the sampling of one observation do not affect the choice of
the second observation.  Consider a case in which the
observations are not independent.  A researcher wants to
estimate how productive a person with osteoarthritis is at
work compared to others without the disease.  The
researcher randomly chooses one person who has the
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condition from an osteoarthritis disease registry and
interviews that person.  The researcher asks the person who
was just interviewed for the name of a friend who can be
interviewed next as a control (person without osteoarthritis
working the same job).  In this scenario, there is likely to be
a strong relationship between the levels of productivity of
the two individuals.  Thus, a sample of people chosen in this
way would consist of dependent pieces of information.  In
other words, the selection of the first person would have an
influence on the selection of other subjects in the sample.  In
short, the observations would not be considered to be
independent.  The data also need to be normally distributed
or the sample must be large enough to make that assumption
(central limit theorem) and sample variances must be
approximately equal (homogeneity of variance).  The
assumption of homogeneity of variance is that the variance
within each of the populations is equal.  As a rule of thumb,
if the largest variance divided by the smaller variance is less
than two, then homogeneity may be assumed.  This is an
assumption of analysis of variance (ANOVA), which works
well even though this assumption is violated except in the
case where there are unequal numbers of subjects in various
groups.  If the variances are not homogeneous, they are
heterogeneous.  If these characteristics are met, a parametric
test may be used.  The parametric procedures include tests
such as the t-tests, ANOVA, correlation and regression.  The
list of tests in Table 1-1 is not all-inclusive of tests used in
clinical trials, but it represents the most common analyses.
Complex or uncommon statistical tests may be appropriate,
but they should be adequately referenced in the publication
of a clinical trial.

Comparing Two or More
Means 

The Student’s t-test is a parametric statistical test used to
test for differences between means of two independent
samples.  This test was first described by William Gosset in
1908, and was published under the pseudonym “student”.
Because the t-test is an example of a parametric test, the
criteria for such a test needs to be met before use.  The
measured variable is approximately normally distributed
and continuous.  The variances of the two groups are
similar.  The Student’s t-test can be used in cases where
there is either an equal or unequal sample size between the
two groups.  Once the data are collected, and the t value is
computed, the researcher consults a table of critical values
for t with the appropriate alpha level and degrees of
freedom.  If the calculated t value is greater than the critical
t value, the null hypothesis is rejected and it is concluded
that there is a difference between the two groups.

In contrast to the Student’s t-test, the paired t-test is used
in cases in which the same patients are used to collect data
for both groups.  For example, in a pharmacokinetic study
where a group of patients have their drug serum
concentration measured while taking brand name
medication A, and the same group of patients have their
drug serum concentration measured while taking
medication B, the differences between these two means will

be determined using a paired t-test.  In this case, patients
serve as their own control.  With the paired t-test, the
t-statistic is not describing differences between the groups,
but actual individual patient differences.

When the criteria for a parametric test are unable to be
met, a nonparametric test can be used.  These tests are
traditionally less powerful.  Nonparametric tests do not
make any assumptions about the population distribution.
The requirements of normality or homogeneity of variance
associated with the parametric tests do not need to be met.
These tests usually involve ranking or categorizing the data
and in doing so may decrease the accuracy of the data.  It
may be more difficult to identify differences that are
actually there. The investigator needs to evaluate the risk of
type II error.  The Mann-Whitney U test is one of the most
powerful nonparametric tests, and tests a hypothesis that the
medians of two groups are significantly different.  The
Mann-Whitney U test is the nonparametric equivalent to the
Student’s t-test.  The test is based on ranks of the
observations.  Data are ranked and a formula is applied.  As
with all statistical tests, there are certain assumptions that
need to be met.  Both samples need to be randomly selected
from their respective populations, the data need to be at least
ordinal, and there needs to be independence between the two
samples.  The Wilcoxon rank sum test has similar
assumptions that need to be met and when used, will give
similar results to the Mann-Whitney U test.

The Wilcoxon signed ranks test is a nonparametric
equivalent of the paired t-test for comparing two agents.
The test is based on the ranks of the differences in paired
observations.  To appropriately use this analysis, the
differences are mutually independent, and they all have the
same median.

The one-way ANOVA (also referred to as the F-test) is an
expansion of the t-test to include more than two levels of
discrete independent variables.

The same assumptions for parametric tests need to be met
with this procedure, including the need for the measured
variable to be continuous from populations that are
approximately normally distributed and have equal
variances.  The null hypothesis states that there are no
differences among the population means, and any differences
identified in the sample means are due to chance error alone.
The alternate hypothesis states that the null hypothesis is
false; that there is not a difference among the groups.  This is
because the test statistic identifies that a difference does
occur somewhere among the population means.  If the null
hypothesis is rejected, then an a posteriori test must be done
to determine where the differences lie.  These post hoc
procedures can evaluate where the differences exist while
maintaining the overall type I error rate at a level similar to
that used to test the original null hypothesis (e.g., 0.05).
Examples of these tests include the Tukey Honestly
Significant Difference (HSD) test, Student-Newman-Keuls
test, Dunnett test, Scheffe Procedure, Least Significant
Difference (LSD) test, and Bonferroni Method.  The
Bonferroni Method is the simplest and is best suited for a
small number of preplanned comparisons.  Just as the t-test
involves calculation of a t-statistic, which is compared with
the critical t, ANOVA involves calculation of an F-ratio,
which is compared with a critical F-ratio.
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The ANOVA is preferred over using multiple t-tests
because when more than one hypothesis is tested on the
same data, the risk is greater of making a type I error.  If
three groups of data were being compared (i.e., µA = µB =
µC), and a Student’s t-test was used to compare the means of
A versus B, A versus C, and B versus C, then the type I error
rate would be three comparisons times 0.05 or 0.15.  If
multiple testing did occur, the investigator needs to either
use a stricter criterion for significance or would need to
apply the Bonferroni’s correction.  This factor reduces the
threshold p value by the number of comparisons made.  For
example, if there were six comparisons using multiple
t-tests, the results would only be accepted as being
statistically significant if the new p value was less than
0.008 rather than 0.05.

Two-way (repeated measures) ANOVA is an expansion of
the paired t-test and is used when there are more than two
groups of data and the same group of subjects is studied using
various treatments or time periods.  Several assumptions need
to be met to use the two-way ANOVA, including independent
groups, normally distributed data, similar variance within the
groups, and continuous data.  The difference between a
one-way and two-way ANOVA is that when using a one-way
ANOVA there is a single explanatory variable, and a two-way
analysis is applied to 2 (two) explanatory variables.  The
Kruskal-Wallis (one-way) ANOVA is a nonparametric
alternative to the one-way ANOVA.  The Friedman two-way
ANOVA is used as a nonparametric alternative to the
two-way ANOVA.  For both of these tests, data need to be
measured on at least an ordinal scale.

Finding a Difference with Proportions 
When a researcher has nominal data and want to

determine if frequencies are significantly different from
each other for two or more groups, this can be determined
by calculating a chi square statistic (X2).  The chi square
analysis is one of the most frequently used statistical tests,
and compares what is observed with the data with what one
would expect to observe if the two variables were
independent.  If the difference is large enough, researchers
conclude that it is statistically significant.

To perform a chi square analysis, one must be sure that
the data in the contingency table meet several requirements.
When using a 2X2 contingency table, if n is greater than 20,
the chi square analysis may be used if all expected
frequencies are five or more.  If greater than 2 (two) groups
are compared, the chi square may be used if no more than
20% of the cells may have expected frequencies less than 5
and none may have expected frequencies less than 1.  An
example of how to set up a contingency table is as presented
in Figure 1-2.  A contingency table has two variables.  The
categories (or levels) of the intervention, the fictitious
medication magnadrug or no magnadrug, are represented in
k rows in the table and the category of the outcome,
gastrointestinal upset, are represented by the m columns in
the table.  This is a 2X2 contingency table and has 4 (four)
cells.  A 2X2 contingency table is called this because it has
two rows and two columns and “contingency” because the
values in the cells are contingent on what is happening at the
margins.

By inspecting the observed frequencies (cells A to D), or
those found as a result of the experimental program, there
appears to be differences in the numbers of patients who had
gastrointestinal upset in each group.  The cell frequencies
are added to obtain totals for each row and column.  An
expected frequency is the number of patients one would
expect to find in a given cell if there were no group
differences.  The formula to calculate the expected
frequency of a cell is as follows:

Expected frequency of cell = 

Expected frequency of cell A = 

= = 21.7

In the example, all of the expected frequencies for cells
A through D were greater than 5.  The next step is to
determine if the frequencies observed in the experiment are
significantly different from the frequencies that would be
expected if there were no group differences.  The chi square
statistic is calculated.

If the chi square statistic is equal to or greater than the
critical value, the difference is considered to be statistically
significant.  Chi square analysis does not tell which of the
observed differences is statistically significant from the
others, unless there are only two categories of the variable
being compared.  Further statistical analysis is required to
single out specific differences.

In this case, n is greater than 20.  If the n was less than 20
and if each cell had an expected frequency of at least 5, a
Fisher’s exact test could have also been used.  If more than
2 (two) groups are being compared, a Fisher’s exact test
may be used if the sample size is at least 20 and any cell has
an expected frequency of less than 5.

The McNemar’s test and Cochran’s Q test are tests of
proportions based on samples that are related.  McNemar’s
test involves dichotomous measurements (e.g., present or
absent) that are paired.  Cochran’s Q test can be thought of
as an extension of the McNemar’s test concerned with three
or more levels of data.

Regression and Correlation Analysis 
Both regression and correlation analysis are used to

evaluate interval or ratio data. Correlation analysis is
concerned with determining if a relationship exists between

6080
280

(76)(80)
(280)

(cell’s row total)(cell’s column total)
(total number of patients in study)
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Gastrointestinal Upset

Yes No Total

Magnadrug Yes 42 A 34 B 76

No 38 C 166 D 204

Total 80 200 280

Figure 1-2. Example of a contingency table.
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two or more variables and describes the strength of that
relationship.  Regression on the other hand describes the
magnitude of the change between the two variables. In other
words, regression is both descriptive and predictive,
whereas correlation is only descriptive.

Regression analysis provides a mathematical equation
that can be used to estimate or predict values of one variable
based on the known values of another variable. Regression
analysis is used when there is a functional relationship that
allows investigators to predict the value of a dependent (or
outcome; y) variable from the known values of one or more
independent (predictor; x) variable(s).  When there is one
explanatory variable, it is referred to as simple regression.
When two or more explanatory variables are tested, it is
referred to as a multiple regression analysis.  When the
response variable is a binary categorical variable (e.g., dead
or alive), the procedure is called logistic regression.
Logistic regression may be either simple or multiple logistic
regression.  In a study, an investigator may collect data on
several explanatory variables, determine which variables are
more strongly associated with the response variable, and
then incorporate these variables into a regression equation.
Cox proportional hazards regression is used to assess the
relationship between two or more continuous or categorical
explanatory variables and a single response variable (time to
the event).  Typically, the event (e.g., death) has not yet
occurred for all participants in the sample, which creates
censored observations.  Elements that need to be presented
when describing the results of a study include the methods
for selection of independent variables, threshold of
significance, and overall, how well the model worked.  In
many cases, this information is underreported.

In the case of simple linear regression, the formula for
the model is:

Dependent variable = 
intercept + (slope × independent variable)

The regression line is the straight line that passes through
the data that minimizes the sum of the squared differences
between the original data and the line, and is referred to as
the least squares regression line.  Once the linear
relationship has been determined, the next step is to
determine if there is a statistically significant relationship
present.  The coefficient of determination, r2, describes the
proportion of the variation of the data presented by the
dependent variable that is explained by the independent
variable.  An r2 of 1.0 is a perfect relationship between the
two variables.  If the r2 value were 0.5, this is interpreted as
50% of the variation in the data presented by the dependent
variable can be described by the independent variable.  An
ANOVA is used to determine if the differences identified are
due to chance.  If a p value was found to be less than 0.05,
one would conclude that there is a significant relationship
between the two variables of interest.  The closer the
coefficient of determination is to “0”, the less likely it would
be to find a difference.  A significant value indicates that
there is an association, and typically not a cause and effect
relationship.  This is true in most cases. An exception to this
rule is in the case of stability studies in which the

independent variable is controllable. In this case, a cause
and effect relationship can be claimed.

Correlation is used to determine if two independent
variables are related in a linear manner.  For instance, an
investigator wants to determine if there is a relationship
between bone mineral density and the number of fractures in
postmenopausal women.  A unitless number, called the
correlation coefficient “r”, summarizes the strength of the
linear relationship between the two variables.  The r value
varies from “-1 to +1”.  A “-1” indicates a perfect linear
relationship in which one variable changes while the other
changes in an inverse fashion.  The closer the calculated
value is to this number, the stronger the negative
relationship.  A “0” indicates no relationship exists between
the two variables.  A “+1” indicates that there is a perfect
positive linear relationship with one variable changing as
the other changes in the same direction.

Although there are several formulas used to determine the
correlation coefficient, the most common method is the
Pearson’s product-moment correlation.  This formula assumes
normal distribution.  The Spearman correlation coefficient is
the comparable nonparametric statistic if the data are not
normally distributed.  When interpreting the r value, a p value
needs to be considered to help assess how likely the
correlation is due to chance.  If in the above example with
bone mineral density and risk of fractures the relationship
between these two variables was determined to have an r value
of 0.97 and a p of 0.01, then the r value is significantly
different from 0 (no correlation) and that the finding is
probably not due to chance.  If investigators conclude that
there is a relationship between the two variables, this does not
imply that there is a cause and effect relationship.  Unlike the
regression analysis, the correlation analysis does not describe
the magnitude of the change between the two variables.  In
other words, regression is both descriptive and predictive,
whereas correlation is only descriptive.

Confidence Intervals 
A CI is the range of values consistent with the data,

which is believed to contain the actual or true mean of the
population.  The estimate of the population mean from the
sample is referred to as the point estimate.  The range of
possible means is defined as the confidence limits.  The CIs
can be used to estimate mean differences between groups or
estimate the true mean for the population from which the
sample was drawn.  When considering the CI of the
difference between two groups, the 95% CI is related to
statistical significance at the 0.05 level.  When the 95% CI
for the estimated difference between groups or in the same
group over time does not include zero, the results are
significant at the 0.05 level.  For example, if the difference
in mean blood pressure measurements between two groups
was 10 mm Hg (95% CI = 6–10 mm Hg), the difference
between the groups in mean blood pressure would be
considered to be statistically significant at the 0.05 level.
Zero is not included in the area for 95% of the values over
which the observed difference is likely to range; therefore, it
must be in the remaining 5%. The likelihood of obtaining a
difference of 0 mm Hg is less than 5 times in 100.
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In contrast, the mean difference in blood pressure
measurement between two groups was 2 mm Hg
(-1–5 mm Hg).  Here, the CI includes zero, so the difference
is not statistically significant at the 0.05 level.  The
likelihood of obtaining a difference of 0 mm Hg is greater
than 5 times in 100.  The CI can be used as an alternative to
conventional statistical tests of significance in hypothesis
testing, and is most often preferred because of the
information that can be obtained from these values.  The
width of the CI is an indicator of the precision of the
estimate; the level of significance is an indicator of the
accuracy.  For a given level of confidence, the narrower the
CI, the greater the precision of the sample mean as an
estimate of the population means.  There are three factors
that can influence the width of the CI.  First, the variance of
the sample scores on which the CI is calculated can affect
the width of the CI, with a smaller variance resulting in a
narrower CI.  Although efforts could be made to obtain a
more homogenous sample from the population to help
decrease the width of the CI, in general, the investigator
typically has little control over this variable.  Secondly,
sampling precision can also influence the size of the
interval.  Because sample precision is related to the square
root of the sample size, doubling the sample size will
decrease the width by 25%.  And the last factor is the level
of confidence that is used.  If an investigator wants to be
99% confident that the true mean of the population is
included in the range of values, the CI will be wider than if
the investigator sets the level of confidence at 95%.

In addition to the CI being used to describe differences
between group means or mean changes within the same
group, the CI can also be used for proportions, odds ratios,
and risk ratios.  Over time, the CI can also be used for
proportions, odds ratio, and risk ratios.  Other common
estimates that may be accompanied by a CI include survival
rates, slopes of regression lines, effort to yield measures,
and coefficients in a statistical model.  The CI can also be
used for a single clinical trial, but are also routinely used to
describe aggregate data in a meta-analysis.

Measures of Association
with Categorical Data 

Relative risk and odds ratio are two measures of disease
frequency.  The relative risk is the ratio of the incidence rate
of an outcome in the exposed group to the incidence rate of
the outcome in the unexposed group.  The incidence rate of
a disease is a measurement of how frequently the disease
occurs.  It is the number of new cases of the disease (in a
defined time period) divided by the number of individuals in
that population at risk.

If the relative risk is 1, the risk of unintended drug effect
for an exposed person is the same as the risk for the
nonexposed person.  If the relative risk is greater than 1, the
risk of unintended drug effect for an exposed person is X
times greater than that for a nonexposed person.  If the
relative risk is less than 1, the risk of unintended drug effect
for an exposed person is X times less than that of a
nonexposed person.  Frequently, we would like to not only

give an indication of risk or benefit in relative terms, but one
would like to examine the actual risk.  One way to describe
this is by presenting the attributable risk.  Attributable risk
is defined as follows:

Attributable risk = 
incidence of gastrointestinal disease in exposed group –
incidence of gastrointestinal disease in unexposed group

Another important method to describe risk is as an odds
ratio. The odds ratio is an estimate of the relative risk when
the disease under study is relatively rare. When using the
odds ratio as an estimator of risk, one must assume that the
control group is representative of the general population, the
cases are representative of the populations with the disease,
and the frequency of the disease in the population is small.
The odds ratio is mathematically obtained by multiplying the
number of cases with the disease and exposed to the factor
by the number of cases without the disease and not exposed
to the factor and dividing this number by the number of cases
with the disease without exposure to the factor multiplied by
those cases without the disease but exposed to the factor. It is
defined by the following equation:

odds of exposure for cases A/C
Relative odds = 

odds of exposure for controls B/D

The odds ratio of 1 is interpreted as the number of cases
that are just as likely to have been exposed as the controls.
An odds ratio of greater than 1 is interpreted as the number
of cases that are X times more likely to have been exposed
than are the controls.  An odds ratio of less than 1 is
interpreted as the number of cases that are X times less
likely to have been exposed than the control.

Confidence intervals are frequently used as a measure of
testing the significance. When a 95% CI contains 1, there is
no difference between exposed and nonexposed groups.

A more detailed description of statistics commonly used
with the pharmacoepidemiology literature is described in
the Pharmacoepidemiology chapter.

Survival Analysis 
Data in clinical trials may be presented using survival

curves with time-to-the-event as the dependent variable.
The event or outcome may be treatment response. Patients
are followed until either they experience a predefined event
or follow-up is terminated without an end point event.  Two
common ways to calculate a life table are the actuarial
approach and the Kaplan-Meier approach.  There are several
assumptions that need to be met in order to use this analysis.
There needs to be an identifiable starting point.  With the use
of medications, the identifiable starting point is immediately
after the medication is given.  There needs to be a
well-defined outcome that is dichotomous, such as death or
hospitalization.  The Kaplan-Meier approach should not be
used if any patients are lost to follow-up because this event
may be related to the outcome of interest.  Under these
circumstances, the survival function will be biased with an
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underestimation of the risk of death.  Lastly, there should not
be significant differences in how patients are handled.
Secular changes are changes (diagnostic practices and
treatment regimens) that occur over time, and as such,
patients who were enrolled in the trial early may differ from
those who were enrolled later.  The investigator, under these
circumstances, could not assume that he or she is dealing
with a homogeneous group, and therefore, the data should
not be combined.

The log-rank statistic is commonly used to compare two
survival distributions. This test compares the observed
number of events with the numbers expected.  This test
works under the assumption that if there is no difference
between the groups, then at any interval the total number of
events should be divided between the groups approximately
to the number of subjects at risk.  A log rank test assigns
scores to each uncensored and censored observation based
on the logarithm for the estimated probability at each
observation.  If two curves are being compared and there are
an equal number of patients in both groups, then each group
should have about the same number of events.

Another test commonly used to assess survival curves is
the Cox proportional hazards model.  This test has been
compared to the analysis of covariance for handling survival
data in that it can handle any number of covariates in the
equation quantifying the effect of covariates on the survival
time.  The Cox proportional hazards model is used when the
researcher is concerned about group differences at baseline
and related to a covariate that is measured on a continuous
scale.  This allows the investigator to evaluate survival data
and adjust for confounding variables such as severity of
disease or age.

Meta-Analysis 
Meta-analysis is a discipline that provides methods for

finding, appraising, and combining data from a range of
studies to answer important questions in ways not possible
with the results of individual studies.  Meta-analysis can be
used if 1) definitive clinical trials are impossible, unethical,
or impractical, 2) randomized trials have been performed,
but the results are conflicting, 3) results from definitive
trials are being awaited, 4) new questions not posed at the
beginning of the trial need to be answered, and 5) sample
sizes are too small.  From a logistical standpoint, a written
protocol needs to be strictly followed consistent with a good
research design, including a clearly defined research
question, search strategy, abstraction of data, and statistical
analysis.  Data are typically inspected using an L’Abbe plot.
This technique is used to inspect data for heterogeneity.  The
outcome rates in treatment and control groups are plotted on
the vertical and horizontal axes.  The graphical display
reveals heterogeneity of both size and direction of effect,
and indicates which studies contribute most to it.

Pooling refers to methods of combining the results of
different studies.  This is not simply combining the data
from all trials into one very large trial, but rather statistically
combining results in a systematic way.  Pooling must
maintain the integrity of individual studies.  In general, the
contribution of each study to the overall result is determined

by its study weight, usually the reciprocal of its variance.
Details regarding the statistical methods for pooling are
beyond the scope of this chapter.

Summary 
A basic understanding of statistical concepts and

application is important when assessing data as the
foundation of the clinical decision-making process
regarding the use of medications in patients.  This chapter
provides a general overview of statistical concepts including
both descriptive and inferential statistics.  One of the more
common mistakes made by readers of the scientific
literature is the failure to distinguish between the clinical
and statistical significance of the data.  In general, data that
are clinically significant are relevant to patient care.  When
claiming that data are statistically different, this refers to a
mathematical term to express a conclusion that there is
evidence against the null hypothesis.  The probability is low
of getting a result as extreme or more extreme than the one
observed in the data if the null hypothesis is accepted.
Merely achieving statistical significance does not
characterize the author’s data as clinically important.
Having a sound understanding of statistical concepts allows
readers to make good judgments regarding the validity and
reliability of the data, and to assess the value of the data to
an individual patient or patient group.  Readers are referred
to the Annotated Bibliography for more detailed
information regarding the topics described.

Annotated Bibliography
1. Campbell MJ, Gardner MJ. Calculating intervals for some

nonparametric analyses. BMJ 1988;296:1454–6.

This article reviews the methodology to calculate
confidence intervals (CIs) for some nonparametric analyses,
including a population median and mean (when the criteria
for normal distribution are not met).  It is a well-organized
document that nicely outlines these two approaches.  The
authors also describe the limitations of providing CIs with
nonparametric analysis.  It is not always possible to calculate
CIs with exactly the same level of confidence.  The authors
recommend that the 95% CI be routinely calculated.  The
paper is concisely written, easy to read, and provides some
nice examples to reinforce concepts.

2. Fitzgerald SM, Flinn S. Evaluating research studies using the
analysis of variance (ANOVA):  issues and interpretation.
J Hand Ther 2000;13:56–60.

This article provides a critical evaluation of the single
factor analysis of variance (ANOVA) test by providing a
question and answer format addressing the issues that are
pertinent to the evaluation of a test in a clinical trial.  It
describes whether the ANOVA is appropriate to use, discusses
its interpretation, use of post hoc test of analysis, examination
of error, and clinical interpretation.  The authors do not
discuss which post hoc test is best based for a particular data
set, but rather they provide a general review of important
concepts to consider.  The authors discuss the elements that
affect type I and type II error, including all elements that
affect power of a study.
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3. Fleming TR, Lin DY. Survival analysis in clinical trials:  past
developments and future directions. Biometrics
2000;56:971–83.

This article is a nice review of standard statistical
procedures for assessing survival in clinical trials.  The article
discusses the more conventional methods such as
Kaplan-Meier approach to estimating the survival function,
the log-rank statistic for comparing two survival curves, and
proportional hazards model for quantifying the effects of
covariants on survival time.  The authors provide an overview
of the direction anticipated for future research activities.  This
type of analysis has gained a significant popularity in this era
of outcome management, with the science of survival analysis
changing and evolving in several directions.  For example, the
authors discuss the concept of integrating a Bayesian
approach in survival analysis, especially in the areas of
noncompliance and multivariate failure time.

4. Freedman KB, Bernstein J. Sample size and statistical power
in clinical orthopaedic research. J Bone Joint Surg
1999;81:1454–60.

This paper provides a nice overview of the relationship
between sample size and statistical power.  The authors
discuss the concept of hypothesis testing and using a priori
selection of both types I and type II error rates.  The
implications of not having enough power relating to the
inability to find a difference when a difference truly exists are
nicely described.  The authors also nicely describe the
relationship between the elements that affect power, including
an extensive discussion on effect size, variance, error rate, and
the role of sample size.  The authors also reinforce the need to
do a post hoc analysis of power after completion of the study.

5. Freiman JA, Chalmers TC, Smith H, Kuebler RR. The
importance of beta, the type II error and sample size in the
design and interpretation of the randomized control trial.
N Engl J Med 1978;299:690–4.

This article describes an analysis where the authors
reviewed 71 trials in which the investigators did not find a
difference among the patient groups.  The authors were
interested in assessing the frequency by which these 71 trials
lacked sufficient sample size to find a difference if one may
have actually existed.  Sixty-seven of the trials had a greater
than 10% risk of missing a 25% difference between the
groups, and 50 of the trials missed a 50% improvement.
These authors describe the implications of low power and
reinforce the occurrence of this problem in the literature with
the results of their analysis.

6. Gardner MJ, Altman DG. Confidence intervals rather than
p values:  estimation rather than hypothesis testing. Br Med J
1986;292:746–50.

This paper provides a nice review of CIs and compares their
value to conventional hypothesis testing.  It also describes how
to calculate CIs for means and proportions.  Simple and
practical examples are provided to reinforce the concepts.  The
paper also describes how CIs should be presented in the
literature, including suggestions for graphical display.

7. Greenfield ML, Kuhn JE, Wojtys EM. A statistical primer.
Correlation and regression analysis. Am J Sports Med
1998;26:338–43.

This review provides a nice overview of correlation and
regression analysis.  The information is an overview for
individuals who are unfamiliar with the concepts,

interpretation, and presentation of information.  The authors
also provide some examples throughout the document to
highlight and reinforce basic concepts.  The authors reinforce
the differences between the two analyses and emphasize areas
that are commonly confused between the two functions.  To
emphasize the value of regression analysis, they discuss only
the concept of simple linear regression.  This paper does not
discuss differences with other regression analyses such as
multiple regression or logistic regression.  Readers are
referred to other publications for these discussions.

8. Guyatt G, Walker S, Shannon H, Cook D, Jaeschke R, Heddle N.
Correlation and regression. CMAJ 1995;152:497–504.

This article provides a nice overview of correlation and
regression.  With the increasing emphasis on outcome studies
using large databases, using these statistical tests will
continue to increase.  This article is a nice primer of when
these tests are used and how to interpret the data.  The authors
use several real examples to help describe and differentiate
these concepts.  Sets of data are provided that help readers use
and interpret the information.  The difficulty with this article
is that the authors assume that readers have a basic
understanding of concepts, including calculation of values.

9. Guyatt G, Jaeschke R, Heddle N, Cook D, Shannon H,
Walter S. Hypothesis testing. CMAJ 1995;152:27–32.

This article provides a nice review of the statistical
concepts of hypothesis testing and p values.  The role of
chance and its relationship to probability and p value are
discussed.  Simple examples, such as the toss of the coin, help
explain these concepts to clearly reinforce the basic concepts.
The authors discuss in brief the concept of type II error, type
I error related to the multiple testing problem, and limitations
of hypothesis testing.  The concept of successful
randomization and the potential need to adjust baseline values
to improve the validity of the results also are discussed.  This
article reviews the basics of hypothesis testing and describes
core concepts relating to the testing process.

10. Hartzema AG. Guide to interpreting and evaluating the
pharmacoepidemiologic literature. Ann Pharmacother
1992;26:96–7.

The article provides an overview of criteria for evaluating
the pharmacoepidemiologic literature.  The author discusses
the elements needed to evaluate research design, including the
case-control and cohort studies.  He discusses how data can be
interpreted, including the use of the odds ratio, relative risk,
measures of association (p value), and CIs.  This is not a
complete review, but rather a simple, concise article that
addresses what a reader of pharmacoepidemiologic literature
may need to consider in interpretation.  The author does not
provide calculations or common errors in their use or
interpretation.  This would not be a good article for an
individual well versed in basic concepts, but rather someone
who is new to pharmacoepidemiologic concepts.

11. Henry DA, Wilson A. Meta-analysis. Part 1. An assessment of
its aims, validity and reliability. Med J Aust 1992;156:31–8.

This review is part one of a two-part series that addresses the
issue of meta-analysis, including the purpose, controversies,
and the reliability and validity of the technique.  This article is
basic in its approach, yet it addresses many issues pertinent to
review of the data produced by this technique.  The authors
describe the literature that addresses the reliability and validity
of meta-analysis.  The authors provide a balanced review, and
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use data to reinforce some of the areas of controversy or value
of combining data.  The article also reinforces the need to
provide a systematic approach to performing a meta-analysis,
as the results that are obtained can be misleading without a
logical and statistically sound approach.

12. Khan KS, Chien PW, Dwarakanath LS. Logistic regression
models in obstetrics and gynecology literature. Obstet
Gynecol 1999;93:1014–20.

This study examines the variations in quality of the reporting
of logistic regression in the scientific literature.  Criteria were
described and used to assess the accuracy, precision, and
interpretation of logistic regression in 193 articles from four
generic obstetrics and gynecology journals in 1985, 1990, and
1995.  The authors found that the proportion of articles that
used logistic regression increased over this time period.  There
were several violations in quality and presentation, including
the lack of clear reporting of dependent and independent
variables (32.1%), the selection of variables being inadequately
described (51.8%), and 85.1% did not report assessment of
conformity to linear gradient.  This article is a nice review for
how logistic regression should be presented in the literature.  It
also reinforces the need to critically evaluate its presentation
because of the misinformation that is frequently described.

13. Kuhn JE, Greenfield ML, Wojtys EM. A statistics primer.
Hypothesis testing. Am J Sports Med 1996;24:702–3.

This article focuses on the concept of hypothesis testing
and compares and contrasts the null and research hypothesis.
The authors reinforce the need to clearly state the hypothesis
within a publication, and for the reader of such an article to
identify the elements important to these concepts.  The
readers should identify the research and null hypothesis of the
article that they are reviewing, and the meaning of the type I
and type II error of a trial.  This is an important article that
addresses the development of the null hypothesis and
appropriate selection of statistical analysis.

14. Lachin JM. Introduction to sample size determination and
power analysis for clinical trials. Control Clin Trials
1981;2:93–113.

This article summarizes sample size determination and its
relationship to power when planning a research project.
Frequently, articles will review only one or two testing
procedures.  The advantage of this article is that the authors
discuss methods for sample size determination for the t-test,
tests for proportions, tests for survival time, and tests for
correlations.  For each example, sample values are given and
calculated.  There is also a detailed discussion of power and
the elements that affect power.  The article is written in a
concise, practical, and easy-to-read manner.

15. Lee ET, Go OT. Survival analysis in public health research.
Annu Rev Public Health 1997;18:105–34.

Common statistical techniques for assessing survival data in
public health research are reviewed.  The authors discuss both
nonparametric and semi-parametric approaches, including the
Kaplan-Meier Product Limit Method, methods of testing the
equality of survival distributions, and Cox’s regression model.
The authors also discuss parametric models that are commonly
used, such as the accelerated failure time model.  Hazard
functions for the exponential, Weibull, gamma, Gompertz,
lognormal, and log-logistic distributions are described.
Examples from the literature help reinforce principles.  There
is a nice overview of commercially available software

packages that can help perform these analyses, including SAS,
BMDP, SPLUS, SPSS, EGRET, and GLIM.  The first two are
discussed more extensively than the others in this article.

16. Levine MA. A guide for assessing pharmacoepidemiologic
studies. Pharmacotherapy 1992;12:232–7.

The article is organized into eight primary questions
that need to be considered when reviewing the
pharmacoepidemiology literature, such as elements of study
design, association, temporal relationship, evaluation of a
dose-response relationship, and other practical points relating
both to the logistics, as well as interpretation of the data.  The
authors address many of the basic elements in evaluating this
type of literature, but that would be considered to be too basic
for a researcher in the area.  This area is frequently
overlooked in published reviews or general tests on statistics.
For more extensive, detailed information, the reader is
referred to other publications from this author and others.

17. Loney PL, Chambers LW, Bennett KJ, Roberts JG, Stratford
PW. Critical appraisal of the health research literature:
prevalence of incidence of a health problem. Chronic Dis Can
1998;19:170–6.

This article provides an overview of how to evaluate an
article that estimates the prevalence or incidence of a disease
or health problem.  These two terms are different, but
terminology is frequently misused in the literature.  This
article is a primer for health professionals who have an
interest in either performing this type of research or who
review these publications to make changes in their practice.
The concepts of design, sampling frame, sample size,
outcome measures, measurements, and response rates are
discussed.  Examples are provided that help reinforce how
data need to be presented, interpreted, and applied to practice.

18. Mathew A, Pandey M, Murthy NS. Survival analysis:  caveats
and pitfalls. Eur J Surg Oncol 1999;25:321–9.

This article discusses the concept of survival analysis, its
purpose, and appropriate use.  It also discusses many methods
used to estimate the survival rate and its standard error.  The
authors discuss the concept of misusing these types of tests
and guide the reader on how to properly consider issues with
data.  The authors make some general recommendations,
including the support of the Kaplan-Meier approach,
suggesting that the median (instead of the mean) survival time
be provided whenever possible, and those confidence limits
be used as a measure of variability.  The information that is
shared is practical and frequently overlooked by the
investigators publishing studies that use survival analyses.

19. Pathic DS, Meinhold JM, Fisher DJ. Research design:
sampling techniques. Am J Hosp Pharm 1980;37:998–1005.

Several statistical procedures require that one have a basic
understanding of what constitutes a population versus a
sample, and whether a trial used appropriate randomization
techniques.  This article describes different types of sampling
procedures, including nonprobability samples such as
convenience samples, judgment samples, and quota sampling,
and compares them to probability samples such as simple
random sampling, stratified samples, and cluster samples.
The required formulas and examples for how to calculate
sample size for both estimating the population mean and
establishing population proportions are provided.  Overall, it
is a concise, easy-to-read article that addresses a topic that is
so frequently a source of error in clinical trials.
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20. Perneger TV. What’s wrong with Bonferroni adjustments.
BMJ 1998;316:1236–8.

This article nicely describes the concept of multiple testing
and the increased risk of type I error.  Although textbooks
frequently describe this issue, they also describe using
Bonferroni adjustments to resolve some of these problems.
This article discusses the mechanism to adjust for multiple
testing and describes the problems with this technique,
including testing irrelevant null hypothesis, the increased risk
of type II error, and difficulties with interpretation.  The
authors also discuss circumstances when the Bonferroni
adjustment may be implemented, although they suggest that
few situations actually exist.  This is a nice document to have
in your files when reviewing the concept of multiple testing.

21. Porter AM. Misuse of correlation and regression in three
medical journals. J R Soc Med 1999;92:123–8.

This review discusses some commonly found errors
relating to the use, presentation, and interpretation of both
correlation and regression tests, which are frequently used in
the published literature.  Several clinical trials found in the
British Medical Journal, the New England Journal of
Medicine, and The Lancet were used. The authors identified
15 different errors in the publication process:  eight were
considered to be common.  This paper is important for
individuals who are either using regression or correlation in
clinical research, or for individuals who are routinely
integrating these types of papers into their clinical practice.

22. Rigby AS. Statistical methods in epidemiology:  statistical
errors in hypothesis testing. Disabil Rehabil 1998;20:121–6.

This article on hypothesis testing describes the concept of
statistical testing and the need to provide a systematic
approach to testing a hypothesis.  The authors discuss in detail
the concept of type I and type II error, and the implications of
their occurrence.  The problem of multiple testing and its
relationship to type I error are discussed.  The concept of one-
and two-tailed tests are discussed, and how p values should be
presented in the literature and what they mean.  The authors
also introduce the concept of using CIs and briefly describe
the value of their use.

23. Sacks HS, Berrier J, Reitman D, Ancona-Berk VA,
Chalmers TC. Meta-analyses of randomized controlled trials.
N Engl J Med 1987;316:450–5.

This study provides an overview of elements that should be
routinely included in a meta-analysis.  The authors reviewed
86 meta-analyses in the published literature and assessed each
related to six major areas:  study design, combinability,
control of bias, statistical analysis, sensitivity analysis, and
application of results.  Only 28% of the papers reviewed
addressed all six areas.  In the six major areas, a total of 23
separate items were examined.  Of the reviewed articles, up to
14 items were satisfactorily addressed in any of the studies.
This analysis of the literature reinforces the need to educate
researchers on the appropriate planning, implementing, and
presenting meta-analyses in the literature.

24. Sim J, Reid N. Statistical inference by CIs:  issues of
interpretation and utilization. Phys Ther 1999;79:186–95.

This article provides a nice review of the value of CIs,
including their advantages over conventional hypothesis
testing.  There is a well-organized section on basic principles,
interpretation, and calculation.  The authors describe two
basic advantages to using CIs:  1) to attach a measure of

accuracy to a sample statistic, and 2) to interpret the questions
of clinical importance of the data.  The role of CIs in
meta-analysis is also described.  The authors strongly
reinforce the need to include a CI (in addition to the results of
hypothesis tests) with the level of statistical inference
consistent with the level of statistical significance for the
hypothesis test (95% CI for p<0.05).

25. Wilson A, Henry DA. Meta-analysis. Part 2:  assessing the
quality of published meta-analysis. Med J Aust
1992;156:173–4, 177–80, 184.

This review is part two of a two-part series (part one is
described in Reference 11) that reviews the elements that need
to be considered in a well-designed meta-analysis.  The article
is organized by using 10 questions that every investigator
needs to address.  Although they do not provide details
regarding calculations, several issues relating to statistical
presentation, including the need to plot results, test for
heterogeneity of outcome, and to calculate a summary
estimate are addressed.  The authors also discuss the concept
of publication bias, with a description of a funnel plot.  As the
technique of using meta-analysis to answer important
questions in the literature continues to grow, this article can
serve as an important checklist to use when assessing the
quality of the design and validity of the results.

26. Gaddis GM, Gaddis ML. Introduction to biostatistics:  Part 5,
statistical inference techniques for hypothesis testing with
nonparametric data. Ann Emerg Med 1990;19:153–8.

This article provides several nonparametric statistical tests
used when analyzing nominal and ordinal data.  It is part five
of a six-part series that discusses basic concepts of statistics.
This article is written for the individual who has little
background in statistics.  An individual with a foundation in
statistics would find this article elementary.  The authors have
taken an approach of presenting information to clinicians who
will primarily be in the role of evaluating the published
literature instead of actually performing mathematical
calculation of a set of data.  There are few mathematical
formulas or problem-solving examples in which the reader
needs to manipulate data.

27. De Muth JE. Basic Statistics and Pharmaceutical Statistical
Applications. New York:  Marcel Dekker Inc., 1999:115–48.

This chapter provides a nice overview of the concept of
normal distribution and CIs.  It reviews how to determine if
the distribution is normal and defines and describes the
central limit theorem.  It also has a nice overview of CIs and
their application.  There are practice problems at the end of
the chapter with answers to help reinforce concepts.
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Questions 1 and 2 pertain to the following case.
In a study that compared two different medications for the
treatment of allergic rhinitis, each patient was asked to rank
his or her severity of symptoms on a scale of 0 to 4
(0 = none, 1= mild, 2 = moderate, 3 = moderately severe,
and 4 = severe) 2 hours after the medication was given.

1. What type of data will be obtained from this
measurement?

A. Interval.
B. Ratio.
C. Nominal.
D. Ordinal.

2. Which one of the following is an appropriate method of
central tendency and dispersion for the data that will be
obtained above?  

A. Mean and standard deviation.
B. Median and interquartile range.
C. Median and standard deviation.
D. Median, no measure of dispersion is acceptable.

3. Examine the data set of eight students with the following
grades on a possible 100-point examination:  85, 79, 30,
94, 97, 35, 87, and 88.  Which one of the following
measures of central tendency is least affected by outliers?

A. Median.
B. Mean.
C. Standard deviation.
D. Standard error of the mean.

4. The following data are the number of seizures for five
patients in a study:  3, 4, 4, 6, and 8.  The mean is 5.
Calculate the standard deviation?  

A. 1.
B. 2.

C. 3.
D. 4.

5. In a study that compares the cholesterol-lowering effect
of a new medication to standard therapy, the mean age
of 100 patients receiving the new therapy is 40 years
old, and the standard deviation is 4 years.  Assuming
normal distribution, about what percentage of patients
is expected to be between 32 and 48 years of age?

A. 20%.
B. 68%.
C. 95%.
D. 99%.

6. Normal distribution is an important assumption to make
when using several statistical analyses.  Which one of
the following is an indicator of normal distribution?

A. The kurtosis is 1.
B. The frequency curve is skewed to the right.
C. The mean, median, and mode have similar values.
D. The distribution is only modestly defined by the

mean and standard deviation.

7. The mean difference in diastolic blood pressure
between patients taking either a new or traditional
antihypertensive is 10 mm Hg (95% confidence interval
= -15 mm Hg to 51 mm Hg).  The difference in diastolic
blood pressure was not statistically significant at the
0.05 level.  What number is included in the range of
values that allows you to make this decision?

A. 0.
B. 1.
C. 2.
D. 20.

SELF-ASSESSMENT
QUESTIONS
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8. A p value of less than 0.05 implies which one of the
following?

A. Less than 5% of the time the conclusion from the
statistical test will be due to chance alone.

B. The power of the study is at an acceptable level.
C. There is only a 5% probability that if a true

difference existed that it would be found.
D. A one-tailed test was used.

9. A study that compares the cholesterol-lowering effect
of a new medication to traditional therapy found no
difference in total cholesterol between the two groups
after 1 year of treatment.  What type of error would you
be making if you wrongly concluded that there is no
difference between the two different treatment arms in
total cholesterol?

A. Type I error.
B. Type II error.
C. Power.
D. α Error.

10. When calculating the sample size to determine the
difference between two means, which one of the
following are elements to consider in the equation? 

A. Effect size.
B. Sensitivity.
C. The statistical test that will be used.
D. Measurement process.

Questions 11–16 pertain to the following case.
A bioequivalence study was performed that compared a
generic form of isosorbide dinitrate with a brand name
formulation Isobide.  Fifty-five subjects were randomly
assigned to receive either a single dose of Isobide or a new
generic product.  After a 2-week washout period, subjects
received the alternative agent.  A difference of 2% was
considered to be clinically important between the two
groups, with a power of 60%, and an α value of 0.05.  A
one-tailed test was performed.

11. Why is using a one-tailed test instead of a two-tailed
test a problem in this study?

A. There is a greater chance of making a type II error.
B. There is a greater chance of making a type I error.
C. There is a greater sample size required to

compensate for evaluating the difference in only
one direction.

D. The α is not actually 0.05 but rather 0.025, which is
more stringent than required for a study.

12. Which one of the following is the probability of not
finding a difference if there is indeed a difference?

A. 2%.
B. 5%.
C. 60%.
D. 40%.

13. Which one of the following elements could have
affected the low level of power in this study?

A. The difference that the investigators are looking for
is small.

B. Sample size is large (greater than 30).
C. The α is 0.05.
D. The variability is low.

14. Which one of the following is the appropriate statistical
test to use?

A. Chi square analysis.
B. Fisher’s exact test.
C. Paired t-test.
D. Student’s t-test.

15. Which one of the following criteria need to be met to
use a parametric test?

A. Sample sizes need to be equal.
B. Data need to be at least ordinal.
C. Data need to be normally distributed in both sample

groups.
D. The power needs to be at least 90%.

16. If it were found that a parametric test could not be used,
which one of the following is the nonparametric
alternative?

A. One-way analysis of variance.
B. Student’s t-test.
C. Wilcoxon signed rank test.
D. Mann-Whitney U test.

17. In a study that compared 16 patients who received
either a standard pain medication or a new medication,
the primary end point was documenting whether
patients had complete pain relief.  In this study,
five-eighths (62%) and six-eighths (75%), respectively,
had complete pain relief.  Which one of the following is
the best statistical test to use to determine if this
difference is important?

A. Fisher’s exact test.
B. t-test.
C. Mann-Whitney U test.
D. Paired t-test.

18. A study that compares three different antihypertensive
therapies in 500 young females used the mean decrease
in diastolic blood pressure as the primary end point for
success.  Investigators chose to use the t-test to
determine if the differences between the three groups
were significant.  The authors found a statistically
significant difference among groups.  Why would the
t-test be inappropriate?

A. When using the t-test for three sample groups
randomly drawn from independent populations, the
risk of type I error increases.

B. A Student’s t-test should not be performed when the
variable is measured on an interval or ratio scale.

C. The sample size was not large enough to use a t-test.
D. Investigators used young women in the study who

frequently do not have hypertension.
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19. A study of 40 patients was performed to examine the
association of weight and serum drug levels of a new
antibiotic.  Linear regression was used to assess the
association.  The slope of the regression line
(slope = 30) was significantly greater than 0, indicating
that the serum drug level increases as weight increases.
The  r2 value was calculated as 0.75 (r=0.86).  Which
statement provides the most accurate interpretation of
these data?  

A. Seventy-five percent of the variance in serum levels
is likely to be explained by its relationship with
weight.

B. Twenty-five percent of the variance in serum levels
is likely to be explained by its relationship with
weight.

C. Thirty percent of the variance in serum levels is
likely to be explained by its relationship with
weight.

D. Seventy percent of the variance in serum levels is
likely to be explained by its relationship with
weight.

20. A meta-analysis was performed with the purpose of
assessing the risk of hypertension following the use of
a newly approved medication for weight loss to patients
not taking the medication.  The odds ratio was
calculated to be 5.6.  This is important because an odds
ratio of greater than 1 indicates that there is which one
of the following?

A. A decreased risk in the treatment group.
B. An increased risk in the treatment group.
C. There is no statistically significant difference

between the groups at the 0.05 level.
D. The difference in risk is statistically significant at

the 0.05 level.

21. A meta-analysis was performed with the purpose of
assessing whether using a new medication for
hypertension will increase mortality in patients with
congestive heart failure.  Investigators were interested
in determining if the differences in the individual trial
outcomes were greater than any one could reasonably
expect by chance alone.  Which one of the following is
used to test for heterogeneity?

A. L’Abbe plot.
B. There is no need to test for heterogeneity.
C. t-test.
D. Paired t-test.

22. A study that examined the relationship between birth
weight and salary at age 50 found an r-value of 0.8.
This value can be interpreted as which one of the
following?

A. As birth weight increases, the salary increases.
B. The low birth weight caused a high salary at age 50.
C. There is a statistically significant relationship

between these two values.
D. There is a good to excellent relationship between

these two values.

23. In a study that examines a group of patients with cancer,
the Kaplan-Meier approach of the 5-year survival rate
after treatment was 25% (95% confidence interval
[CI] = 20–35%) for the patients receiving drug A
(n=100) and 65% (95% CI = 60–75%) for patients
receiving drug B (n=100).  The log-rank test revealed a
statistically significant difference between the survival
rates over time (p<0.01).  What test can be used to
assess the association between explanatory variables
(age, family history) and survival rate?

A. Wilcoxon test. 
B. Life table method.
C. Cox proportional hazards regression.
D. Student’s t-test. 

24. An investigator wanted to test the risk of getting
thrombocytopenia with a new low-molecular-weight
heparin compared to patients not receiving heparin, and
found the odds ratio of 5.2 (95% CI = 1.5–10.5).  Which
one of the following answers provides the most
accurate interpretation of this information?

A. Because the CI does not include 0, patients who are
taking the new low-molecular-weight heparin are
5.2 times more likely to have thrombocytopenia
than individuals on heparin and this is considered to
be statistically significant.

B. Because the CI does not include 1, patients who are
taking the new low-molecular-weight heparin are
5.2 times more likely to have thrombocytopenia
than individuals on heparin and this is considered to
be statistically significant.

C. Because the CI does not include 0, patients who are
taking the new low-molecular-weight heparin are
5.5 times more likely to have thrombocytopenia
than individuals on heparin, but this is not
considered to be statistically significant.

D. Because the CI does not include 0, patients who are
taking the new low-molecular-weight heparin are
5.2 times more likely to have thrombocytopenia
than individuals on heparin, but this is not
considered to be statistically significant.

25. Which one of the following statements is most accurate
regarding the appropriate selection and use of simple
linear regression?  

A. It is used when there is only one dependent variable
with only one independent variable being analyzed.

B. It routinely uses Pearson’s product-moment
correlation coefficient, “r”.  

C. It assesses the linear relationship between two or
more continuous or categorical variables and a
single continuous response variable.

D. It is an aspect of time-to-event (survival) analysis.

26. Below are data from a study that was performed to
determine if there was a difference in the length of
recovery room stay for patients undergoing surgery of
the spine who received a new nonsteroidal
anti-inflammatory drug (NSAID), morphine, or the
combination of the two.  Ten records were randomly
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selected from patients receiving each of the three
combinations during a 12-month period.  What test was
used to determine if there was a difference in length of
recovery room stay for these patients?

Recovery room time (hours)
NSAID Morphine Combination

2 3 2
1 2 3
1 2 1
2 2 2
2 4 2
3 1 2
1 1 1
5 2 2
1 2 2
2 2 2

Mean = 2 2.1 1.9

A. Repeated measures analysis of variance.
B. One-way analysis of variance.
C. Three-way analysis of variance.
D. Bonferroni adjustment.
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