

What to Expect Today

- Review biostatistic principles
- Hands on application
- Questions related to your research project

KAISER PERMANENTE. thrive

Example Study: Statin Letter Intervention

Among patients with DM eligible for statin therapy, does an intervention involving a letter, a pre-ordered statin prescription, and pharmacist counseling increase statin initiation compared to no intervention (i.e., usual care)?

- Primary Objective: Compare statin-start rate (i.e., purchase of a statin Rx within 3 months after mailing date) between groups.
- How do you decide which statistical test should be used to test this objective?

Statin Letter Intervention

- What is a rate?
- What type of data are rates?
- Based on the study design (i.e., quasi-experimental, two groups), what potential bias/confounding variables need to be considered?
- What statistical test will you use?

KAISER PERMANENTE. thrive

Statin Letter Intervention

- What is a rate?
 - Rate = The proportion of a population that experiences an outcome in a specified period of time.
- What type of data are rates?
 - Percentages (yes/no experienced the outcome) so are binomial data.
- Based on the study design what potential bias/ confounding variables need to be considered?
 - Selection bias: Patients in the intervention clinic are more engaged in health behaviors.
 - Confounding: Patients in the intervention clinic are older & sicker.

KAISER PERMANENTE. thrive

,	Type of Data			
Goal	Measurement (from Gaussian Population)	Rank, Score, or Measurement (from Non- Gaussian Population)	Binomial (Two Possible Outcomes)	Survival Tim
Compare two unpaired groups	Unpaired t test	Mann-Whitney test	Fisher's test (chi-square for large samples)	Log-rank test or Mantel- Haenszel*
Compare two paired groups	Paired t test	Wilcoxon test	McNemar's test	Conditional proportional hazards regression*
Compare three or more unmatched groups	One-way ANOVA	Kruskal-Wallis test	Chi-square test	Cox proportional hazard regression**
Compare three or more matched groups	Repeated- measures ANOVA	Friedman test	Cochrane Q**	Conditional proportional hazards regression**
Quantify association between two variables	Pearson correlation	Spearman correlation	Contingency coefficients**	
Predict value from another measured variable	Simple linear regression or Nonlinear regression	Nonparametric regression**	Simple logistic regression*	Cox proportional hazard regression*
Predict value from several measured or binomial variables	Multiple linear regression* or Multiple nonlinear regression**		Multiple logistic regression*	Cox proportional hazard regression*

Statin Letter Intervention

- What statistical test will you use?
 - To assess differences in rates between two groups: Chisquare test of association since outcome is binary (yes/no started a statin) and these are large groups
 - To adjust for any potential selection bias: stratification on presence/non-presence of biasing factor
 - To adjust for any potential confounding: logistic regression since outcome is binary (yes/no started a statin)

KAISER PERMANENTE, thrive

Statin Letter Intervention

- Secondary Objectives: Between the intervention and control groups
 - Compare statin persistence rate (i.e., statin purchase 1 year after mailing date +/- 45 days) between groups
 - Compare abnormal CK (>600) or ALT (>200) rate (i.e., at least one abnormal lab result within 6 months after mailing date) between groups
- What statistical tests will you use for these secondary objectives?

KAISER PERMANENTE. thrive

	Type of Data			
Goal	Measurement (from Gaussian Population)	Rank, Score, or Measurement (from Non- Gaussian Population)	Binomial (Two Possible Outcomes)	Survival Time
Compare two unpaired groups	Unpaired t test	Mann-Whitney test	Fisher's test (chi-square for large samples)	Log-rank test or Mantel- Haenszel*
Compare two paired groups	Paired <i>t</i> test	Wilcoxon test	McNemar's test	Conditional proportional hazards regression*
Compare three or more unmatched groups	One-way ANOVA	Kruskal-Wallis test	Chi-square test	Cox proportional hazard regression**
Compare three or more matched groups	Repeated- measures ANOVA	Friedman test	Cochrane Q**	Conditional proportional hazards regression**
Quantify association between two variables	Pearson correlation	Spearman correlation	Contingency coefficients**	
Predict value from another measured variable	Simple linear regression or Nonlinear regression	Nonparametric regression**	Simple logistic regression*	Cox proportional hazard regression*
Predict value from several measured or binomial variables	Multiple linear regression* or Multiple nonlinear regression**		Multiple logistic regression*	Cox proportional hazard regression*

KAISER PERMANENTE, thrive

An Examination of the Association Between Therapeutic Anticoagulation Control and Glycemic Control for Patients with Diabetes on Oral Anticoagulation Therapy

- Purpose: To assess the relationship between A1c% and percent time in therapeutic INR range (TTR) for patients with diabetes receiving warfarin
 - A1c% are normally distributed interval level data
 - TTR are skewed interval level data
- Study Design: Retrospective cohort
- What statistical test will you use to quantify the relationship?
- What statistical test will you use if A1c% is categorized as >=8% & <8%?

KAISER PERMANENTE. thrive

	Type of Data			
Goal	Measurement (from Gaussian Population)	Rank, Score, or Measurement (from Non- Gaussian Population)	Binomial (Two Possible Outcomes)	Survival Time
Compare two unpaired groups	Unpaired t test	Mann-Whitney test	Fisher's test (chi-square for large samples)	Log-rank test or Mantel- Haenszel*
Compare two paired groups	Paired <i>t</i> test	Wilcoxon test	McNemar's test	Conditional proportional hazards regression*
Compare three or more unmatched groups	One-way ANOVA	Kruskal-Wallis test	Chi-square test	Cox proportional hazard regression**
Compare three or more matched groups	Repeated- measures ANOVA	Friedman test	Cochrane Q**	Conditional proportional hazards regression**
Quantify association between two variables	Pearson correlation	Spearman correlation	Contingency coefficients**	
Predict value from another measured variable	Simple linear regression or Nonlinear regression	Nonparametric regression**	Simple logistic regression*	Cox proportional hazard regression*
Predict value from several measured or binomial variables	Multiple linear regression* or Multiple nonlinear regression**		Multiple logistic regression*	Cox proportional hazard regression*

	Characteristic	$\begin{array}{l} \mathrm{A1C} \geq 8 \\ (n \equiv 216) \end{array}$	$\begin{array}{l} \mathrm{A1C} < 8 \\ (n = 695) \end{array}$
A good way to develop a plan	Mean Percent of Time	60.3 (31.2)	60.3 (28.9)
for statistical analysis is to	Mean Percent of Time above INR Range (SD)	$15.8\ (23.3)$	$15.4\ (21.2)$
think about what your Subject/	Mean Percent of Time below INR Range (SD)	$22.9\ (28.6)$	$23.2\ (26.3)$
Patient Characteristic table is	Mean Age in Years (SD)	$67.6\;(10.5)^{\dagger}$	$71.1\ (9.3)$
likely to look like	Female (%)	41.2	41.4
-	Diet Interaction (%)	2.8	4.3
Which variables do you think	Drug Interaction (%)	6.5	7.8
Which valuates do you think	Non-Adherent with	53.2	45.9
should be adjusted for in	Anticoagulant Therapy (%)		
enedia se adjaotea fer in	Thromboembolic Event	0.9	1.0
loaistic rearession modelina of	during the 90 Days		
	Maan Fragmancy of INR	4.6 (2.6)	5.0 (2.7)
the relationship between	Testing during the	4.0 (2.0)	0.0 (2.1)
A4+ 400/ 8 TTDO	90 Days Prior to		
A1C<0% & ITR?	A1C Reading (SD)		
	Primary Diagnosis for	45.4	48.2
	Anticoagulation		
	Therapy (%)		
	Atrial Fibrillation		
	Pulmonary Embolism/Venous	7.4	8.2
	Thrombosis		
	Mechanical Heart Valve	4.2	4.9
	Stroke/CVA	8.3	6.2
	Other	34.7	32.3
	$^{\dagger}p < 0.001.$		
	$p^{\dagger} = 0.049.$		
13	INR-international normalized ratio	CVA-cerebrovas	scular accident,
-	SD—standard deviation.		

This is a logistic regression	Explanatory Variable	Odds Ratio	95% CI
model of A1c>=8%.	Percent of Time in INR Range	1.00	0.99, 1.01
	Age in Years	0.97	0.95, 0.99
Which of the variables in the table appear to be associated with	Frequency of INR Testing during the 90 Days Prior to the A1C Reading Gender	0.91	0.85, 0.97
having an A1C value ≥8%?	Male	0.94	0.69 1.29
	Female	1.00	-
المراجع ومطفق ومستعد المراجع والمراجع والمراجع والمراجع	Diet Interaction		
now would you interpret the odds	Yes	1.02	0.49, 2.14
methe and a state of suith (A and in	No	1.00	- 1
ratio associated with 'Age in	Drug Interaction		
Vaara 20	Yes	0.87	0.47, 1.62
rears ?	No	1.00	-
	Thromboembolic Event during the 90 Days Prior to the A1C Bandian		
	Var	1.14	0.22.5.8
	No	1.00	=
	Adherent with Anticoagulant Drug Therapy		
	No	1.21	0.88, 1.63
	Yes	1.00	-
	Primary Diagnosis for Anticoagulation Therapy (%)		
	Atrial Fibrillation	1.03	0.72, 1.4
	Pulmonary Embolism/Venous Thrombosis	1.27	0.73, 2.20
	Mechanical Heart Valve	0.73	0.33, 1.62
	Stroke/CVA	1.32	0.72, 2.42
	Other	1.00	-

A Randomized Controlled Trial of Empiric Warfarin Dose Reduction with the Initiation of Doxycycline Therapy

- Purpose: To evaluate the utility of preemptive warfarin dose adjustment for preventing non-therapeutic INR following doxycycline+warfarin co-administration
- Primary outcome: Proportion of subjects with an INR increase ≥1 point over INR goal range upper limit
- Study Design: Randomized controlled trial
- Results: Primary outcome was reached in 0/21 intervention group subjects and 2/18 control group subjects (p = 0.201)
- What statistical test was used to generate the above p-value?
 Interpret this finding using layman's terms
- Is there a need for regression analysis?

	Type of Data			
Goal	Measurement (from Gaussian Population)	Rank, Score, or Measurement (from Non- Gaussian Population)	Binomial (Two Possible Outcomes)	Survival Time
Compare two unpaired groups	Unpaired t test	Mann-Whitney test	Fisher's test (chi-square for large samples)	Log-rank test or Mantel- Haenszel*
Compare two paired groups	Paired t test	Wilcoxon test	McNemar's test	Conditional proportional hazards regression*
Compare three or more unmatched groups	One-way ANOVA	Kruskal-Wallis test	Chi-square test	Cox proportional hazard regression**
Compare three or more matched groups	Repeated- measures ANOVA	Friedman test	Cochrane Q**	Conditional proportional hazards regression**
Quantify association between two variables	Pearson correlation	Spearman correlation	Contingency coefficients**	
Predict value from another measured variable	Simple linear regression or Nonlinear regression	Nonparametric regression**	Simple logistic regression*	Cox proportional hazard regression*
Predict value from several measured or binomial variables	Multiple linear regression* or Multiple nonlinear regression**		Multiple logistic regression*	Cox proportional hazard regression*

Assessment of the Impact of Medication Therapy Management Delivered to Home-Based Medicare Beneficiaries

- Purpose: To assess the impact of an MTM program on mortality, healthcare utilization, and prescription medication costs and to quantify drug-related problems (DRPs) identified during MTM
- Study Design: Retrospective cohort with patents who were targeted for MTM but did and did not consent to receiving MTM
- Outcomes: All-cause death (binomial, primary outcome), hospitalization (binomial), and emergency department visit (binomial) rates and medication costs (ratio) in the 180 days following MTM targeting

Table 1. Patient Characteristics at Baseline				
Characteristic	Patients Who Opted In (n = 459)	Patients Who Opted Out (n = 336)	p Value	
ge, y (mean ± SD) ^a	68.8 ± 10.7	68.9 ± 11.3	0.949	
hronic Disease Score, mean ± SD	8.8 ± 3.1	8.2 ± 3.5	0.016	
fale, %	43.4	45.5	0.541	
reperiod utilization ^b				
inpatient hospitalization, %	20.7	29.2	0.006	
inpatient hospitalizations, mean ± SD	0.3 ± 0.7	0.5 ± 1.0	0.003	
ED visit, %	23.5	23.2	0.917	
ED visits, mean ± SD	0.3 ± 0.8	0.3 ± 0.8	0.956	
fean preperiod medication cost, \$ª (median; IQR)	4465 (3149; 2378-4806)	5197 (3186; 2363-5123)	0.525	
As of date of targeting for medication therapy managem In the 180 days prior to targeting for medication therapy Do you think the outcon Do you think the outcon	management. me 'Pre-period Mec	lication Cost' is		

AISER PERMANENTE, th	rıv
----------------------	-----

	Type of Data			1
Goal	Measurement (from Gaussian Population)	Rank, Score, or Measurement (from Non- Gaussian Population)	Binomial (Two Possible Outcomes)	Survival Time
Compare two unpaired groups	Unpaired t test	Mann-Whitney test	Fisher's test (chi-square for large samples)	Log-rank test or Mantel- Haenszel*
Compare two paired groups	Paired <i>t</i> test	Wilcoxon test	McNemar's test	Conditional proportional hazards regression*
Compare three or more unmatched groups	One-way ANOVA	Kruskal-Wallis test	Chi-square test	Cox proportional hazard regression**
Compare three or more matched groups	Repeated- measures ANOVA	Friedman test	Cochrane Q**	Conditional proportional hazards regression**
Quantify association between two variables	Pearson correlation	Spearman correlation	Contingency coefficients**	
Predict value from another measured variable	Simple linear regression or Nonlinear regression	Nonparametric regression**	Simple logistic regression*	Cox proportional hazard regression*
Predict value from several measured or binomial variables	Multiple linear regression* or Multiple nonlinear regression**		Multiple logistic regression*	Cox proportional hazard regression*

Event	Unadjusted OR (95% CI) ^b	Adjusted OR (95% CI) ^b
ath	0.5 (0.3 to 0.9)	0.5 (0.3 to 0.9)°
patient hospitalization	1.3 (0.9 to 1.9)	1.4 (1.1 to 2.0)d
D visit	0.9 (0.7 to 1.3)	0.9 (0.6 to 1.3) ^d
ncrease in medication cost	1.5 (1.1 to 2.0)	1.4 (1.1 to 1.9)e
Patients who opted out are of Adjusted for age, sex, Chron	comparator group. ic Disease Score, and patient hospitalizatio	d presence/absence n.

Why was it necessary to do an adjusted analysis?

- For which variable did the adjusted analysis make a difference in the outcome?
- Interpret the finding related to death in layman's terms
 KASER PERMANENTE. thrue

