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Ohre of the most important aspects of clinical research is the inference that an
association represents a cause-effect refation. In this chapter we discuss ways to
strengthen causal inferences based on associations in observational studies. We
begin with a discussion of how to avoid spurious associations and then concen-
trate on ruling out real associations that do not represent cause-effect, especially
those due to confounding.

Suppose that a study reveals an association between coffee drinking and myo-
cardial infarction (MI). One possibility is that coffee drinking is a cause of ML
Before reaching this conclusion, however, four rival explanations must be consid-
ered (Table 9.1). The first two of these, chance (random error) and bias (systematic
error), represent spurious associations: Coffee drinking and MI are not really
associated in the population, only in the study findings.

Even if the association is real, however, it may not represent a cause-effect
relation. Two rival explanations must be considered. One is the possibility of an
effect-cause relation—that having an MI makes people drink more coffee. (This
is just cause and effect in reverse.) The other is the possibility of confounding—
that some third factor (such as cigarette smoking) is a cause of MI and is also
associated with coffee drinking.

‘u SPURIOUS ASSOCIATIONS

Ruling Out Spurious Associations Due to Chance

Imagine that there is no association between coffee drinking and Mlin the popula-
tion, and that 60% of the entire population drinks coffee, whether or not they
have had an ML If we were to select a random sample of 20 MI patients, we
would expect about 12 of them to drink coffee. But by chance alone we might
happen to get 19 coffee drinkers in a sample of 20 Ml patients. In that case, unless
we were lucky enough to get a similar chance excess of coffee drinkers among
the controls, a spurious association between coffee consumption and MI would
be observed. Such an association due to random error (chance) is called a Type
I error (Chapter 5).

Strategies for minimizing random errors are available in both the design and
analysis phases of research (Table 9.2). The design strategies of increasing the
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® TABLE 9.1
The Five Explanations When an Association Between Coffee Drinking andt Myocardial
Infarction (M) 1s Observed in a Sample
Type of What's Really Going on
Explanation Association in the Popuiation? o Cu_u_s_ql_ngiglr
1. Chance Spurious Coffee drinking and Ml are
(random error) not related
2. Bios Spurious Coffee diinking and Ml are
(systernatic amor) not related
3. Effect-Cause Real Ml is a caouse of coffee Coffee i
drinking drinking :
4. Confounding Redl Coffee drinking is associaled Facior X Q
with a third, exirinsic factor o .
that is a cause of M Coffee
. M
drinking
5. Cause-Effect Real Coffee drinking is a cause of Coflee M
Vil drinking

precision of measurements and increasing the sample size are imporlant ways (o
reduce random error that are discussed in Chapters 4 and 6, The analysis strategy
of calculating P values and confidence intervals helps the investigator quantify
the magnitude of the observed association in comparison with what might have
occurred by chance alone, For example, a P value of 0.10 indicates that the observed
difference between the two groups was as large a difference as would oceur by
chance alone about one time in [,

Ruling Qut Spurious Associations Due 1o Bias

Assaciations that are spurious because of bias are trickior. To understand bias it
isimportant to distinguish between the research guestionand the question actually
answered by the study (Chapler 1}, The research question is the uncertainty in
the universe the investigator really wishes to settle, and the question answered

B TABLE 9.2
Strengthening the Inference That an Association Has o Cause-Effect Basis: Ruling Cut
Spurious Associations

Pesign Phase Analysis Phase

Type of Spurious
Association

(How to prevent the rival
expianation)

(How to evaluate the rival
explanation)

Chance
(due to random erron

Bics
(due to systematic error)

Increase somple size and
other shrategies (Chapters 4
and 6),

Carefully consider the potan-
lial consequences of each
difference hetween the re-
search question and the
study plan:

Subjects

Predictor

Outcome

Interpret P value in context
of prior evidence (Chapter
5).

Obtoin additional data to
sea if potential biases
have actudily occurred.

Check consistency with
other studies (especially
those using different
methods).
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by the study reflects the comprormises the investigator needed to make for the
study to be feasible. Bias can be thought of as a systematic difference between
the research question and the actual question answered by the study that may
cause the study to give the wrong answer to the research question. Strategies for

minimizing these systematic errors are available in both the design and analysis
phases of research (Table 9.2).

Design Phase. Many kinds of bias have been identified, and dealing with
some of them has been a major topic of this book. To the specific strategies noted
in Chapters 3, 4, 7, and 8 we now add a general approach to minimizing sources
of bias. Write down the research question and the study plan side by side, as in
Fig. 3.1. Then carefully think through the following three concerns:

1. Do the samples of study subjects (e. 8. cases and controls} sufficiently represent
the population(s) of interest?

2. Does the measurement of the predictor variable sufficiently represent the
predictor of interest?

3. Does the measurement of the outcome variable sufficiently represent the
outcome of interest?

For each question answered “No”* or “Maybe not,” consider whether the bias is
large enough that the study could give the wrong answer to the research question.

Target population

Cause-effect

RESEARCH . ) [ stupy -\
[ intended
' sample

Patients in the
investigator's clinic
who consent to

All adults

) : the study
Phenomena design > Intended
of interest variables

CAUSE

Actuafl coffee
drinking habits

PREDICTOR

Reported cofee

drinking habits

7/
infer

Association

EFFECT
Actual MI

QUTCOME
Diagonosis of M
in medical records

" TRUTHINTHE
sTuDY

N FIGURE 9.1

. Minimizing bias by comparing the research question and the study plan.
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To illustrate this with our coftee and Ml example, consider the implications of
drawing the sample of control subjects from a population of hospitalized patients.
I many of these patients have chronic illnesses thal have caused them o redace
their coffee inlake, the semple of controls will not represent the larget poputation
from which the M1 patients arose; there will be a shortage of coffee drinkers.
Farthermore, if coflec d Fithing is measured by questionnaire, the answers on the
questionnaire may not accurately represent actual coffee d rinking, the predictor
of interest. And if esophageal spasm, which can be exacerbated by coffee, is
misdiagnosed as M1, a spurious association between coffee and Mi could be found
because the measured outcome (diagnosis of M1} did not accurately represent the
outcome of interest (actual M1,

The nextstep is to think shout possible strategies tor preventing cach potential
bias. If the bias is casily preventable, revise the study plan and ask the three
questions again. If the bias is nol casily preventable, decide whether the study s
still worth doing by making a judgment on the likelihood of the polential bias
and the degree to which it will compromise the conelusions.

Analysis Phase. Tl investigalor is often faced with one or muore potential
biases after the data have been collected. Some may have been anticipated but
too difficult to prevent, and others may nol have been suspected until it was too
fate to avoid them.

[ cither situation, one approach is to ablain additionat information to estimate :
the magnitude of the potential bias. Suppose, for example, the investigator is
concerned that the hospitatized control subjects do not represent the targel popula-
tion of people free of M because they have decreased their coffee intake due to
chronic iflness. The magnitude of this sampling bias could be estimated by re-

viewing the diagnoses of the control subjects and separating them into lwo groups: }
those with an iliness like peptic uleer thal might alter cofTee habits and those with
illnesses that would not. [7 both types of controls deank less coffee than the M1
cases, then sampling bias would be a less ikely explanation for the findings. ‘

Simiia:'ly, if thein vestigator is concerned thal a questionnaire does not accurately
capture cofiee drinking (perhaps because of puorly worded questions), she could
assign a blinded interviewer 1o question a subsel of the cases and controls to
determine the agreemoent with their questionnaire responses. Finally, if the out-
come measure is in doubt, the investigalor could specify objective clectrocardio-
graphic and serum enzyme changes needed for the diagnosis, and reanalyze the
data excluding the subset of cases that do not meet these eriteria,

The investigator can also look at the results of other studies. [f the conctusions
are consisternd, the association is loss fikely to be duce to bias, This is especiaily
truc if the other studies have used different methods and are thus unlikely to
share the same biases. [n many cases, polential bigses turn out not to be a major
problem. The decision on how vigorously (o pursue additional information and
how best to discuss these issues in reporting the study are matters of judgment
for which it is helpful 10 seek advice from colleagues,

B REAL ASSOCIATIONS OTHER THAN CAUSE-EFFECT

Onee spurious associations have beea determined 1o be unlikely, the two types
of associations that are real but do not represent cause-cffect must be considered
(Table 9.3).
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2 TABLE 9.3
Strengthening the Inference Thot an Association Has a Cause-Effect Basis: Ruling Out
Other Real Associations

Design Phase Analysis Phase
(How to prevent the rival (How to evaluate the rival
Type of Real Association explanation) explanation)
Effect-Cause Do afongitudinal study Consider biologic piausibility

the ou i . . _—
gheecmj;? g}igséo;’golly Obtain data on the histaric Consider findings of ather

dicton sequence of the variables studies with different designs

Confounding See Table 9.4 See Table 9.5
(another variable is asso-
ciated with the predictor
and a cause of the
outcome)

Effect-Cause

One possibility is that the cart has come before the horse-—the outcome has caused
the predictor. Effect-cause is often a problem in cross-sectional and case-control
studies, especially when the predictor variable is a laboratory test for which no
previous values are available. Suppose, for example, that a study finds high serum
Cereactive protein levels (a marker for inflammation} in men recovering from
myocardial infarction. The M1 may have caused the high C-reactive protein levels
rather than vice versa.

Effect-cause is less commonly a problem in cohort studies because risk factor
measurements can be made in a group of patients whe do not yet have the disease.
Even in cohort studies, however, effect-cause is possible if the disease has a iong
latent period and those with subclinical disease cannot be identified at baseline.
A good example is the association between low serum cholesterol levels and
excess cancer mortality that has been observed in many cohort studies (1). Excess
cancer mortality risk associated with low serum cholesterol decreases over time
(whereas the excess heart disease mortality in those with hi gh cholesterol continues
undiminished) (2). This suggests that preexisting but hidden cancer caused low
cholesterol levels at baseline in some subjects. Effect-cause is further supported
by the abservation that cancer death is associated with falling cholesteral levels (3).

This example illustrates a general approach to ruling out effect-cause: drawing
inferences from assessments of the variables at different points in time. In addition,
effect-cause is often unlikely on the grounds of biologic implausibility. For exam-
ple, it is unlikely that predisposition to lung cancer causes cigarette smoking.

Confounding

The other rival explanation in Table 9.3 is confounding, which occurs when there
Is an extrinsic factor involved in the association that is the real cause of the
outcome. The general connotation of confounding is something that confuses
interpretation, but in epidemiologic research the term has a more specific statistical
meaning. A confounding variable is one that is associated with the predictor
variable and is a cause of the outcome variable.

Cigarette smoking is a likely confounder in the coffee and M1 example because
smoking is associated with coffee drinking and is a cause of ML If this is the
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actual explanation, then the association between coffee and M1 does not represent
cause-effect even though it is perfectly real; the coffee is an innocent bystander.
Appendix 9.A gives a numeric example of how cigarette smoking could cause an
apparent association between coffee drinking and MI.

Aside from bias, confounding is often the only likely alternative explanation
to cause-effect and the most important one to try to rule out. It is also the most
challenging; the rest of this chapter is devoted to strategies for coping with con-
founders.

m COPING WITH CONFOUNDERS IN THE DESIGN
PHASE

In observational studies, most strategies for coping with confounding variables
require that an investigator be aware of and able to measure them. (This is not
true of experiments, which can control unmeasured confounders by randomiza-
tion. See Chapter 10.) The first step is to list the variables (like age and sex) that
may be associated with the predictor variable of interest and that may also be a
cause of the outcome. The investigator must then choose between the design and
analysis strategies for controlling the influence of these potential confounding
variables.

The two design-phase strategies (Table 9.4), specification and matching, invalve
changes in the sampling scheme. Cases and controls (in a case-control study) or
exposed and unexposed subjects (in a cohort study) are sampled in such a way

1 TABLE 9.4
Design Phase Strategies for Coping with Confounders

Strategy

Advantages

Disadvantages

Specification

Matching

Easily understood

Focuses the sample of subjects
for the research question at hand

Can eliminate influence of strong
constitutional confounders like
age and sex

Can eliminate influence of con-
founders that are difficult to
meacsure

Cain Increase precision {power)
by balancing the number of
cases and controls in each
stratum

May be a sampling convenience,
making it easier to select the con-
trols in @ case-centrof study

Limits generdlizability

May make it difficult to acguire
an adeguate sample size

May be time-consuming and ex-
pensive, less efficient than increas-
ing the number of subjects (e.g.,
the number of controls per case)

Decision to match must be made
at outset of study and can have
irreversible adverse effect on anal-
ysis and conclusions

Requires early decision about
which variables are predictors
and which are confounders

Removes the option of studying
matched variables as predictors
or gs intervening varlables

Requires matched analysis

Creatfes the danger of over-
matching (.e., matching on a
factor that is not a confounder,
thereby reducing powen
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that they have comparable values of the confounding variable. This removes the
confounder as an explanation for any association that is observed between pre-
dictor and outcome.

Specification

The simplest strategy is to design inclusion criteria that specify a value of the
potential confounding variable and exclude everyone with a ditferent value. For
example, the investigator studying coffee and M1 could specily that only nonsmok-
ers would be included in the study. If an association were then observed between
coffee and MI, it obviously could not be due fo smoking,

Specification is an effective strategy, but, as with all restrictions in the sampling
scheme (Chapter 3), it has disadvanlages. First, even if coffee does not cause Ml
in nonsmokers, it may cause them in smokers. (This phenomenon-—an effect of
coffee on MI that is different in smokers from that in nonsmokers—is called
effect modification or interaction.) Thus specification limits the generalizability
of information available from a study, in this instance compromising our ability
to generalize to smokers. Second, if smoking is highly prevalent among the patients
available for the study, the investigator may not be able to recruit a large enough
sample of nonsmokers.

These problems can become serious if specification is used to control too many
confounders or to control them too narrowly. Sample size and generalizabifity
would be major problems if a study were restricted to lower-income, nonsmoking,
70- to 75-year-old men.

Matching

Ina case-control study, matching involves selecting cases and controls with match-
ing values of the confounding variable(s). Matching and specification are both
sampling strategies that prevent confounding by allowing comparison only of
cases and controls that share comparable levels of the confounder. Matching
differs from specification, however, in preserving generalizability because subjects
at all levels of the confounder can be studicd.

Matching is usually done individually (pairwise matching). In the study of
coffee drinking as a predictor of MI, for example, cach case (a patient with an
M1} could be individually matched to one or more contrals that smoked roughly
the same amount as the case (e.g., 10 to 20 cigarettes per day). The coffee drinking
of each case then would be compared with the coffee drinking of the matched
control(s) of that case.

Analternative approach to matching is to do it in groups (frequency matching).
For each level of smoking, the number of cases with that amount of smoking
could be counted, and an appropriate number of controls with the same level of
smoking could be selected. If the study called for two controls per case and there
were 20 cases that had smoked 10 to 20 cigarettes per day, the investigators would
select 40 controls that smoked this amount, matched as a group to the 20 cases.

Matching is most commonly used in case-control studies, but it can also be
used with other designs. For example, to investigate the effects of acute respiratory
distress syndrome (ARDS) on subsequent quality of life, 73 survivors of ARDS
were matched with controls with comparable severity of underlying illness or
injury but no ARDS {4). The matched pairs were then interviewed 2 years after
their initial hospitalization about their current quality of life. The subjects who
had survived ARDS were faring worse than their paired controls in most domains.
This illustrates the use of matching in a double cohort design.
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Advantages to Matching. There are four main advantages to matching (Table
9.4). The first three relate to the control of confounding variables; the last is a
matter of logistics.

= Matching is an effective way to prevent confounding by constitutional factors
like age and sex that are strong determinants of outcome, are not susceptible
to intervention, and are unlikely to be an intermediary in a causal pathway.

® Matching can be used to contro! confounders that cannot be measured and
controlled in any other way. For example, matching siblings (or, better yet,
twins) with one another can control for a whole range of genetic and familial
factors that would be impossible to measure, and matching for clinical center
in a multicenter study can control for unspecified differences among the popula-
tions seen at the centers.

® Matching may increase the precision of comparisons between groups (and thus
the power of the study to find a real association) by balancing the number of
cases and controls at each level of the confounder. This may be important if the
available number of cases is limited or if the cost of studying the subjects is
high. However, the effect of matching on precision is modest and not always
favorable. In general, the desire to enhance precision is a less important reason
to match than the need to control confounding,.

® Finally, matching may be used primarily as a sampling convenience, to narrow
down an otherwise impossibly large number of potential controls. For example,
n a nationwide study of toxic shock syndrome, victims were asked to identify
friends to serve as controls (5). This convenience, however, runs the risk of
"overmatching” (discussed later).

Disadvantages fo Matching. There are a number of disadvantages to match-
ing (Table 9.4).

= Matching sometimes requires additional time and expense to identify a match
for each subject. In case-control studies, for example, the more matching criteria
there are, the larger the pool of controls that must be searched to match each
case. Cases for which no match can be found will need to be discarded. The
possible increase in statistical power from matching must thus be weighed
against the potential loss of otherwise eligible cases or controls.

m Because matching is a sampling strategy, the decision to match must be made
at the beginning of the study and is irreversible. This precludes further analysis
of the effect of the matched variables on the cutcome. It also can create a serious
error if the matching variable is not a fixed (constitutional) variable like age or
sex, but a variable intermediate in the causal pathway between the predictor
and outcome. For example, if an investigator wishing to investigate the effects
of alcohol intake on risk of MI matched on serum high-density lipoprotein
(HDL) levels, she would miss beneficial effects of alcohol mediated through an
increase in HDL. Although the same error can occur with the analysis phase
strategies discussed later, matching builds the error into the study in a way that
canmot be undone; with the analysis phase strategies the error can be avoided
simply by appropriately altering the analysis.

®m Correct analysis of matched data requires special analytic technigues that com-

pare each subject only with the individual(s} with whom she has been matched,
and not with subjects who have differing levels of confounders. The use of
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ordinary statistical analvsis wechmgues on matehed dats can lead o incorrect
resulis (generally: biased toward no eftect) because the assumplion thal the
sroups are sampled independent v is vielated  Phis somcetimes ereates a problem
because the appropriate matched analyses, especially mudtivariate techniques,
are less tamiliar Lo most inyestigators and less readily available in packaged
statistical programis than are the wsual unmatched technigques.

Atinal disadvantage of malching i the possibility ol overmatehing, which
occurs when the matching variable i not o contamder because il is nod associated
wilh the outcome. Overmalehing can reduce the power of a casescontrol shudy,
making it more ditticult to lind an association that realls exists in the population.
I the study ol tosee shock svindrome that used Tocmds for controls, lor example,
matching mav have inappropriately controlled tor regional differences in tampon
marketing, making # more probable that cases and controls wouldd use the same
brand of tampon. U is impoertant Lo nole, howeser, that overmatching will not
distort the estimated relative risk (provided that o malched analysis is used); it
Thus when the tindings ol the study
are stalistically signihicant (s was the case in the toxie shock example), overmateh-
ing is nol a problem,

will only reduce 1 slatistical signiticance,

E COPING WITH CONFOUNDERS IN THE ANALYSIS
PHASE

Both design-phase stialegivs (Table U.5) yequire deciding at the outset of the
study which variables are predictors and which are confounders, Stratification
and adjustment, bvo anabysis-phase strategies, allow the investigator to defer
that decision until she has Tooked at the data and scen which variables may be
confounders,

Sometimes there are several predictor variabies, cach of which may act as a
confounder 1o the others. For example, although coffee drinking, smoking, sex,
and personality ivpe are associated with M, they are also associaled with cach
other. The goal may be to determine which of these predictor variables are inde-
pendently associated with M1 and which are associsted with M1 only because
they are associaled with other (causal) risk factors. In this section, we discuss
anaiytic methods Tor assessing the independent contribution of predicior variables
in abservational studies,

Stratification

Like specification and matching, stratilication ensures that only cases and controls

(or exposed and unesposed subjects) with similar levels of a potential confounding,
variable are compared. It involves segregating the subjects into strata (subgroups)

The reason that overmatching reduces power can be seen wath a matched pairs analvais of a case-
control sludv. [ the malched analvss onks case control pairs that ase discordant tor enpostre la e
risk factor are amalyzed Matchiog anoa vaniable associated with the sk B lor wH lead Lo fewer
discordant pairs aid henee smalle effective samphe stz and Jess power, OF course, this happens to
sane estentany bnwe matciung i vsed, not st with overmaichang The ditference wilh overmatching
iv that this cost comes with no beneit, bBeeanse the smalding was nal nevessan o controd conlound-
ing. 113 malched analusis is nob used then the estimalte of the elect size will be dislorted, because
the matching cavses the cases and vontrols o be more Tikely 1o Base e samee valoe of the risk
Laclor.
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B TABLE 9.5
Analysls Phase Strategles for Coping with Confounders
Strategy Advantages Disadvantages
Stratification Easily understood Nurmber of strata limited by sam-
Flexible and reversible: can ple size needed for each stratum:
choose which variables to stratify Few covariables can be consid-
upon dffer data collection ered

Few strata per covariable leads
o less complete control of con-
founding

Relevant covariables must have
been measured

Sia_tisﬁcc:l Multiple confounders can be con- Model may nof fit:
adjustment frolled simulfangously Incomplete control of con-
Information in continuous vari- founding (if model does not fit
ables can be fully used confounder-outcome relation-
ship)

Flexible and reversible
Inaccurate estimates of
strength of effect (if model
does not fit predictor-outcome
relationship)

Results may be hard to under-
stand

Retevant covariables must have 1
been measured

according to the level of the potential confounder and then examining the relation
between the predictor and outcome separately in each stratum. Stratification is
illustrated in Appendix 9.A. By considering smokers and nonsmokers separately
(“stratifying on smoking’’), the confounding effects of smoking can be removed.

Like matching, stratification is easily understood. An advantage of stratification
is its flexibility: by performing several stratified analyses, the investigators can
decide which variables appear to be confounders and ignore the remainder, (This
may be done by determining whether the results of stratified analyses substantially
differ from those of unstratified analyses; see Appendix 9.A.} No choices need be
made at the beginning of the study that might later be regretted.

The principal disadvantage of stratified analysis is the limited number of vari-
ables that can be controlled simultaneously. For example, possible confounders
in the coffee and MI study might include age, systolic blood pressure, serum
cholesterol, cigarette smoking, and alcohol intake. To stratify on these five vari-
ables, even if there were only three strata for each, would require 3° (= 243) strata!
With this many strata there will be some that have zeroes in the margins (e.g.,
strata with cases but no controls), and data in these strata cannot be used.

To maintain a sufficient number of subjects in each stratum, a variable is
often divided into just two strata. When the strata are too broad, however, the
confounder may not be adequately controlled. For example, if the preceding study
stratified using only two age strata (e.g., age < 50 and age > 50), confounding
would still be possible if within each stratum the subjects drinking the most coffee
were also the oldest and thus at highest risk of ML
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Adjustment

Several statistical techniques are available to adjust for confounders. These tech-
niques model the nature of the associations among the variables to isolate the
effects of predictor variables and confounders. For example, a study of the effect
of lead ingestion on IQ in children might examine parental education as a potential
confounder. Statistical adjustment might model the relation between parents’
years of schooling and the child’s 1Q as a straight line. The 1Qs of children with
different lead levels could then be adjusted to remove the effect of parental
education using the approach described in Appendix 9.B. Similar adjustments
can be made for several confounders simultancously, using software for multivari-
ate analysis.

One of the great advantages of multivariate adjustment techniques is the
capacity to control the influence of many confounders simultaneously. Another
advantage is their use of all the information in continuous variables. It is easy,
for example, to adjust for a parent’s education level in 1-year intervals, rather
than stratifying into just two or three categories.

There are, however, two disadvantages of multivariate adjustment. First, the
model may not fit. Computerized statistical packages have made these models
so accessible that the investigator may not stop to consider whether their use is
appropriate to the particular study. Taking the example in Appendix 9.B, the
investigator should examine the data to sce whether the relation between the
parents’ years of schooling and the child’s 1Q is actually linear. If the pattern is
very different (e.g., quadratic), then attempts to adjust 1Q for parental education
using a linear model will be imperfect and the estimate of the independent effect
of lead will be incorrect,

Second, the resulting highly derived statistics are difficult to understand intu-
itively. This is particularly a problem if a simple model does not fitand transforma-
tions (e.g., parental education squared) or interaction terms (e.g., child sex times
parental education) are needed.

# CHOOSING A STRATEGY

What general guidelines can be offered for when to use each of these strategies?
The use of specification to control confounding is most appropriate for situations
in which the investigator is chiefly interested in specific subgroups of the popula-
tion; this is really just a special form of the general process in every study of
establishing criteria for selecting the study subjects (Chapter 3).

An important decision to make in the design phase of the study is whether to
match. Matching is most appropriate for fixed constitutional factors such as age,
race, and sex. Matching may also be helpful when the sample size is small com-
pared with the number of strata necessary to control for known confounders, and
when the confounders are more easily matched than measured. However, because
matching can permanently compromise the investigator's ability to observe real
assaciations, it should be used sparingly, and in situations where it is clear that
analysis-phase strategies are not as good.

The decision to stratify or adjust can wait until after the data are collected and
the investigator can analyze the data to see which factors are potential confounders
(i.e., associated with both the predictor of interest and the outcome). However,
it is important to consider which factors may be used for adjustment at the time
the study is designed, in order to know which variables to measure. Also, since
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strategies for controlling the influence of a specific confounding variable can only
succeed to the degree that the confounder is well measured, it is important to
design measurement approaches that have adequate precision and accuracy
(Chapter 4).

Evidence Favoring Causality

The approach to enhancing causal inference has largely been a negative one thus
far—how to rule out the four rival explanations in Table 9.1, A complementary
strategy is to seek characteristics of associations that provide positive evidence
for causality, of which the most important are the consistency and strength of the
association, the presence of a dose-response relation, and biologic plausibility.

When the results are consistent in studies of various designs, it is less likely
that chance or bias is the causce of an association. Real associations that represent
effect-cause or confounding, however, will also be consistently observed. For
example, if cigarette smokers drink more coffee and have more Mls in the popula-
tion, studies will consistently observe an agsociation between coffee drinking
and Ml

The strength of the association is also important. For one thing, stronger associa-
tions give more significant P values, making chance a less likely explanation.
Stronger associations also provide better evidence for causality by reducing the
likelihood of confounding. Associations due to Confounding are indirect (i.e.,
via the confounder) and therefore are generally weaker than direct cause-effect
associations. This is illustrated in Appendix 9.A: the very strong associations
between coffee and smoking (odds ratio = 16) and between smoking and Ml
{odds ratio = 4) led to a much weaker association between coffee and MI (odds
ratio = 2.25).

A dose-response relation provides positive evidence for causality. The associa-
tion between cigarette smoking and lung cancer is an example: Moderate smokers
have higher rates of cancer than nonsmokers, and heavy smokers have even higher
rates. Whenever possible, predictor variables should be measured continuously or
in several categories, so that any dose-response relation that is present can be
observed. Once again, however, a dose-response relation can be observed with
effect-cause associations or with confounding. For example, if heavier coffee drink-
ers also were heavier smokers, their Ml risk would be greater than thatof moderate
coffee drinkers.

Finally, biologic plausibility is an important consideration for drawing causal
inference—if a causal mechanism that makes sense biologically can be proposed,
evidence for causality is enhanced, whereas associations that do not make sense
given our current understanding of biology are less likely to represent cause-
effect. It is important not to overemphasize biologic plausibility, however, Investi-
gators can come up with a suggested mechanism for virtually any association.

= SUMMARY

1. The design of observational studies should anticipate the need to interpret
associations. The inference that the association represents a cause-effect rela-
tion is strengthened by strategies that reduce the likelihood of the four rival
explanations—chance, bias, effect-cause, and confounding,.

2. The role of chance can be minimized by designing a study with adequate
sample size and precision to assure a low Type I error rate. Once the study
is completed, the likelihood that chance is the basis of the association can be
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judged from the P value and the consistency of the results with previous

evidence.

3. Bias arises from differences between the population and phenomena addressed
by the research question and the actual subjects and measurements in the
study. Bias can be avoided by basing design decisions on a judgment as to
whether these differences will lead to a wrong answer to the research question.

4. Effect-cause is made less likely by designing a study that permits assessment
of temporal sequence, and by considering biologic plausibility.

5. Confounding is made less likely by the following strategies:

a. Specification or matching in the design phase, which alters the sampling
strategy to ensure that only groups with similar levels of the confounder
are compared. These strategies should be used sparingly because they can
irreversibly limit the information available from the study.

b. Stratification or adjustment in the analysis phase, which accomplishes the
same goal statistically and preserves more options for coping with confound-
ers. Adjustment permits many factors to be controlled simultaneously, but
the data may not fit the statistical model and the resulting measures of
association may not be easy to grasp intuitively.

6. Causal inference is further enhanced by positive evidence: the consistency and
strength of the association, the presence of a dese-response relation, and
biologic plausibility.

- EXERCISES

1. You are planning a case-control study to address the research question,
“Does eating more fruits and vegetables reduce the risk of coronary heart
disease (CHD) in the elderly?”* Suppose that your study shows that people
in the confrol group report a higher infake of fruits and vegetables than
people with CHD, .

What are the possible explanations for this inverse association between
intake of frults and vegetabies and CHD? How could each of these possibili-
fies be altered in the design phase of the study? How could they be ad-
dressed in the analysis phase?

Give speclal attention to the possibility that the association between
eating fruits and vegetables and CHD may be confounded by exercise (if
people who eat more fruifs and vegetables also exercise more, and this is
the cause of their lower CHD rates). What approaches could you use to
cope with exercise as ¢ possible confounder. and what are the advantages
and disadvantages of each plan?
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BE APPENDIX 9.A
Hypothetical Example of Confounding

Confounding by cigarelle smoking can be the cause of an apparent association
between coffee drinking and ME The entries in these tables are numbers of subjects.
Thus the top lefl entry of Panel | means that, among, the smohkers, Sl MI cases
drank coffee (oud of 80 4 20 = 100 total M1 cases),

L. Both in smokers and in nonsmokers, coffee drinking is not associated
with ML

__Smokers Nonsmokers

Mt No Mi  Nomi
Coffee 80 40 10 20
No Coffee 20 10 40 80

Odds ratie for M associated with coffee:

in smokers h:(}-i—l—[] |
20 2 J0)

in nonsmokers = H - 80 |
) w20

2. However, i we did not stratify on smoking (e, if we did not consider

stokers or nonsmokers separately), coffee drinking and M1 would appear to be
refated. Combining the fwo preceding tables gives

Smokers and

Nonsmokers
__Combined

il No Mi
Coffee Q0 &0
No Coffes 60 Q0

Odds ratio for Ml associated with coflee:

in smokers and non 90~ 94

) - A T 15
smohers combined 5w e 77

3. Smoking is a confounder because it is strongly associated with coftee drink-
ing (below, lefty and with MI (below, vight):?

Coffee and

Ml and No M! No Coffee
Combined Combined
) Coffee No Coffee Mi No Ml
Smokers 120 30 Smokers 100 50
Nonsmolkers 30 120 Nonsmokers 50 100
f“g:gs 11:::1(;\::‘ 120 -/ 120 Odds ratio for M1 - 100 > 100 -
O 30+ 30 associated with smoking 50 % 50

wiated with smoking

*These tablos were obtained Iy rearranging numbers in Panel tand then combining tables
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B APPENDIX 9.B
A Simplified Example of Adjustment

Suppose that a study tinds Lo major prediclors ol the HQ of children: the parental
education fevel and the child’s blood {ead Tevel, Consider e tollowing hypothet
cal data on children with normal and higls fead Teyels,

Average Years of Average 16

Parental Educaftion of Child
High lead level 106 G
Normnal lead level 12.0 T

Note that the parentaf education level is also associated with the chitd s Blood
tead level The question is, “bs the ditlerence in 100 more than can be accounted
For on {he basis of the dilference in parental education?” To answer this queslion
we look at how much ditference in 1) the didlerence in parenlal cducation levels
waould be oxpected to produce. We de s by plotling parental educetional level
versus 1O in the children with normal fead Tevels (g, 9.2)

The dotied line in g, 9.2 shows the relationship hetween ihe child’s 10 and
parental educaticn in childrer with normal fead fovels: There is an increase in the
child’s 10 of [ve points lor cach 2 vears ol parental eduacation. Thus, we can
adjust the 1Q vt the normal lead group 1o account lor the ditference in mean
parental education by <liding down the lne from point A (o poamnt A7 (Bedause

120
115 mean 10
norenat lead .
110 mean 1Q, normal lead. \‘g_ -
adwsted for parental education .
Child's pare LA IQ difterence due o
0 105 \ PO parental education
-8
- -7 ’ A
100 1C ditlerence
i due to lead
95 |..- mean 1Q. ""’V'B
high lead
90
6 8 10 12 14 1

Years of parental education

B FIGURE 9.2
Hypothetical graph of child s K9 as a near tunciion (Aoffed e of yeans of parental edu
cahion.

fHhe descriplion of analvsis of covarianee CYNCUR AT s siiplitusds Actualiv, parenial education s
Plotted agamst e dndd™s 1K i both the gormal amd fugh lead sroups, and the single siope that il
both plobs the boest s used. The moded tor this forn o adpastiend s asstimnes loear relationshi
bebween education and 1Q i botiy aioups, and that the uiu;ws of the lines i e hao wrotpsare the saie
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the group with normal lead levels had 2 more years of parental education on the
average, we adjust their IQs downward by five points to make them comparable
in mean parental education to the high-lead group.) This still leaves a 10-point
difference in 1Q between points A" and B, suggesting that lead has an independent
effect on IQ of this magnitude. Thus of the 15-point difference in IQ of children
with low and high lead levels, five points can be accounted for by their parents’
different education levels and the remaining 10 are attributable to the lead ex-
posure.



